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 Linear Algebra 
 

1 Vector Spaces 
1-1 Vector Spaces 

 
A vector space (or linear space) V over a field F is a set on which the operations addition 

(+) and scalar multiplication, are defined so that for all 𝑥, 𝑦, 𝑧 ∈ 𝑉 and all 𝑎, 𝑏 ∈ 𝐹, 

0. 𝑥 + 𝑦 and 𝑎𝑥 are unique elements in V. Closure 

1. 𝑥 + 𝑦 = 𝑦 + 𝑥 Commutativity of Addition 

2.  𝑥 + 𝑦 + 𝑧 = 𝑥 + (𝑦 + 𝑧) Associativity of Addition 

3. There exists 0 ∈ 𝑉 such that for every 𝑥 ∈ 𝑉, 𝑥 + 0 = 𝑥. Existence of Additive 
Identity (Zero Vector) 

4. There exists an element – 𝑥 such that 𝑥 +  −𝑥 = 0. Existence of Additive 
Inverse 

5. 1𝑥 = 𝑥 Multiplicative Identity 

6.  𝑎𝑏 𝑥 = 𝑎(𝑏𝑥) Associativity of Scalar 
Multiplication 

7. 𝑎 𝑥 + 𝑦 = 𝑎𝑥 + 𝑎𝑦 Left Distributive Property 

8.  𝑎 + 𝑏 𝑥 = 𝑎𝑥 + 𝑏𝑥 Right Distributive Property 

 

Elements of F, V are scalars, vectors, respectively. F can be ℝ, ℂ, ℤ/𝑝, etc. 
 
Examples: 

𝐹𝑛  n-tuples with entries from F 

𝐹∞  sequences with entries from F 

𝑀𝑚×𝑛(𝐹) or 𝐹𝑚×𝑛  mxn matrices with entries from F 

ℱ(𝑆, 𝐹) functions from set S to F 

𝑃 𝐹  or 𝐹[𝑥] polynomials with coefficients from F 

𝐶 𝑎, 𝑏 , 𝐶∞  continuous functions on  𝑎, 𝑏 , (−∞, ∞) 

 

Cancellation Law for Vector Addition: If 𝑥, 𝑦, 𝑧 ∈ 𝑉 and 𝑥 + 𝑧 = 𝑦 + 𝑧, then 𝑥 = 𝑦. 
Corollary: 0 and -x are unique. 
 

For all 𝑥 ∈ 𝑉, 𝑎 ∈ 𝐹, 

 0𝑥 = 0 

 𝑥0 = 0 

  −𝑎 𝑥 = − 𝑎𝑥 = 𝑎(−𝑥) 
 

1-2 Subspaces 
 
A subset W of V over F is a subspace of V if W is a vector space over F with the operations 
of addition and scalar multiplication defined on V. 
 

𝑊 ⊆ 𝑉 is a subspace of V if and only if 
1. 𝑥 + 𝑦 ∈ 𝑊 whenever 𝑥 ∈ 𝑊, 𝑦 ∈ 𝑊. 

2. 𝑐𝑥 ∈ 𝑊 whenever 𝑐 ∈ 𝐹, 𝑥 ∈ 𝑊. 
A subspace must contain 0. 



 
Any intersection of subspaces of V is a subspace of V. 
 
If S1, S2 are nonempty subsets of V, their sum is 𝑆1 + 𝑆2 = {𝑥 + 𝑦|𝑥 ∈ 𝑆1, 𝑦 ∈ 𝑆2}. 
V is the direct sum of W1 and W2 (𝑉 = 𝑊1 ⊕ 𝑊2) if W1 and W2 are subspaces of V such 
that 𝑊1 ∩ 𝑊2 = {0} and 𝑊1 + 𝑊2 = 𝑉. Then each element in V can be written uniquely as 

𝑤1 + 𝑤2 where 𝑤1 ∈ 𝑊1, 𝑤2 ∈ 𝑊2. 𝑊1, 𝑊2 are complementary. 
 
𝑊1 + 𝑊2 (𝑊1 ∧ 𝑊2) is the smallest subspace of V containing W1 and W2, i.e. any subspace 

containing W1 and W2 contains 𝑊1 + 𝑊2. 
 
For a subspace W of V, 𝑣 + 𝑊 = {𝑣 + 𝑤|𝑤 ∈ 𝑊} is the coset of W containing v. 

 𝑣1 + 𝑊 = 𝑣2 + 𝑊 iff 𝑣1 − 𝑣2 ∈ 𝑊. 

 The collection of cosets 𝑉 𝑊 = {𝑣 + 𝑊|𝑣 ∈ 𝑉} is called the quotient (factor) space 
of V modulo W. It is a vector space with the operations 

o (𝑣1 + 𝑊) +  𝑣2 + 𝑊 =  𝑣1 + 𝑣2 + 𝑊 

o 𝑎 𝑣 + 𝑊 = 𝑎𝑣 + 𝑊 
 

1-3 Linear Combinations and Dependence 
 

A vector 𝑣 ∈ 𝑉 is a linear combination of vectors of 𝑆 ⊆ 𝑉 if there exist a finite number of 
vectors 𝑢1, 𝑢2, … 𝑢𝑛 ∈ 𝑆 and scalars 𝑎1, 𝑎2, … 𝑎𝑛 ∈ 𝐹 such that  

𝑣 = 𝑎1𝑢1 + ⋯ + 𝑎𝑛𝑢𝑛 . 
v is a linear combination of  𝑢1, 𝑢2, … 𝑢𝑛 . 
 
The span of S, span(S), is the set consisting of all linear combinations of the vectors in S. 
By definition, span 𝜙 = {0}. S generates (spans) V if span(S)=V. 
 
The span of S is the smallest subspace containing S, i.e. any subspace of V containing S 
contains span(S). 
 

A subset 𝑆 ⊆ 𝑉 is linearly (in)dependent if there (do not) exist a finite number of distinct 
vectors 𝑢1, 𝑢2, … 𝑢𝑛 ∈ 𝑆 and scalars 𝑎1, 𝑎2, … 𝑎𝑛 , not all 0, such that 

𝑎1𝑢1 + ⋯ + 𝑎𝑛𝑢𝑛 = 0. 
 
Let S be a linearly independent subset of V. For 𝑣 ∈ 𝑆 − 𝑉, 𝑆 ∪ {𝑣} is linearly dependent iff 
𝑣 ∈ span(𝑆). 
 

1-4 Bases and Dimension 
 
A (ordered) basis β for V is a (ordered) linearly independent subset of V that generates V. 
Ex. 𝑒1 =  1,0, … 0 , 𝑒2 =  0,1, … 0 , … 𝑒𝑛 = (0,0, … 1) is the standard ordered basis for 𝐹𝑛 . 
 

A subset β of V is a basis for V iff each 𝑣 ∈ 𝑉 can be uniquely expressed as a linear 
combination of vectors of β. 
 
Any finite spanning set S for V can be reduced to a basis for V (i.e. some subset of S is a 
basis). 
 
Replacement Theorem: (Steinitz) Suppose V is generated by a set G with n vectors, and let 

L be a linearly independent subset of V with m vectors. Then 𝑚 ≤ 𝑛 and there exists a 



subset H of G containing 𝑛 − 𝑚 vectors such that 𝐿 ∪ 𝐻 generates V. 
Pf. Induct on m. Use induction hypothesis for {𝑣1, … 𝑣𝑚 }; remove a 𝑢1 and replace by 𝑣𝑚+1. 
 
Corollaries: 

 If V has a finite basis, every basis for V contains the same number of vectors. The 
unique number of vectors in each basis is the dimension of V (dim(V)). 

 Suppose dim(V)=n. Any finite generating set/ linearly independent subset contains 
≥n/≤n elements, can be reduced/ extended to a basis, and if the set contains n 
elements, it is a basis. 

 
Subsets of V, dim(V)=n 

 
Let W be a subspace of a finite-dimensional vector space V. Then dim(W)≤dim(V). If 
dim(W)=dim(V), then W=V. 
 
dim 𝑊1 + 𝑊2 = dim 𝑊1 + dim 𝑊2 − dim⁡(𝑊1 ∩ 𝑊2) 
 
dim 𝑉 = dim 𝑊 + dim⁡(𝑉 ∕ 𝑊) 
The dimension of V/W is called the codimension of V in W. 
 

1-5 Infinite-Dimensional Vector Spaces 
 

Let ℱ be a family of sets. A member M of ℱ is maximal with respect to set inclusion if M is 
contained in no member of ℱ other than M. (ℱ is partially ordered by ⊆.) 

A collection of sets 𝒞 is a chain (nest, tower) if for each A, B in 𝒞, either 𝐴 ⊆ 𝐵 or 𝐵 ⊆ 𝐴. (ℱ 

is totally ordered by ⊆.) 
 

Maximal Principle: [equivalent to Axiom of Choice] If for each chain 𝒞 ⊆ ℱ, there exists a 
member of ℱ containing each member of 𝒞, then ℱ contains a maximal member. 
 

A maximal linearly independent subset of 𝑆 ⊆ 𝑉 is a subset B of S satisfying 
(a) B is linearly independent. 
(b) The only linearly independent subset of S containing B is B. 

Any basis is a maximal linearly independent subset, and a maximal linearly independent 

Basis (n elements)

Generating 
Sets (≥n 

elements)

Linearly 
Independent 

Sets (≤n 
elements)



subset of a generating set is a basis for V. 
 
Let S be a linearly independent subset of V. There exists a maximal linearly independent 
subset (basis) of V that contains S. Hence, every vector space has a basis. 
Pf. ℱ = linearly independent subsets of V. For a chain 𝒞, take the union of sets in 𝒞, and 
apply the Maximal Principle. 
 
Every basis for a vector space has the same cardinality. 
 

Suppose 𝑆1 ⊆ 𝑆2 ⊆ 𝑉, S1 is linearly independent and S2 generates V. Then there exists a 

basis such that 𝑆1 ⊆ 𝛽 ⊆ 𝑆2. 
 

Let β be a basis for V, and S a linearly independent subset of V. There exists 𝑆1 ⊆ 𝛽 so 
𝑆 ∪ 𝑆1 is a basis for V. 
 

1-6 Modules 
 

A left/right R-module 𝑀𝑅 /𝑀𝑅 over the ring R is an abelian group (M,+) with addition and 
scalar multiplication (𝑅 × 𝑀 → 𝑀 or 𝑀 × 𝑅 → 𝑀) defined so that for all 𝑟, 𝑠 ∈ 𝑅 and 𝑥, 𝑦 ∈ 𝑀, 

 Left Right 

1. Distributive 𝑟 𝑥 + 𝑦 = 𝑟𝑥 + 𝑟𝑦  𝑥 + 𝑦 𝑟 = 𝑥𝑟 + 𝑦𝑟 

2. Distributive  𝑟 + 𝑠 𝑥 = 𝑟𝑥 + 𝑠𝑥 𝑥 𝑟 + 𝑠 = 𝑥𝑟 + 𝑥𝑠 

3. Associative 𝑟 𝑠𝑥 =  𝑟𝑠 𝑥  𝑥𝑟 𝑠 = 𝑥(𝑟𝑠) 

4. Identity 1𝑥 = 𝑥 𝑥1 = 𝑥 

 
Modules are generalizations of vector spaces. All results for vector spaces hold except 
ones depending on division (existence of inverse in R). Again, a basis is a linearly 
independent set that generates the module. Note that if elements are linearly independent, 
it is not necessary that one element is a linear combination of the others, and bases do not 
always exist. 
 
A free module with n generators has a basis with n elements. V is finitely generated if it 
contains a finite subset spanning V. The rank is the size of the smallest generating set. 
 
Every basis for V (if it exists) contains the same number of elements. 
 

1-7 Algebras 
 

A linear algebra over a field F is a vector space 𝒜 over F with multiplication of vectors 
defined so that for all 𝑥, 𝑦, 𝑧 ∈ 𝒜, 𝑐 ∈ 𝐹, 

1. Associative 𝑥 𝑦𝑧 =  𝑥𝑦 𝑧 

2. Distributive 𝑥 𝑦 + 𝑧 = 𝑥𝑦 + 𝑥𝑧,  𝑥 + 𝑦 𝑧 = 𝑥𝑧 + 𝑦𝑧 

3.  𝑐 𝑥𝑦 =  𝑐𝑥 𝑦 = 𝑥(𝑐𝑦) 

If there is an element 1 ∈ 𝒜 so that 1𝑥 = 𝑥1 = 𝑥, then 1 is the identity element. 𝒜 is 
commutative if 𝑥𝑦 = 𝑦𝑥. 
Polynomials made from vectors (with multiplication defined as above), linear 

transformations, and 𝑛 × 𝑛 matrices (see Chapters 2-3) all form linear algebras. 
 

  



2 Matrices 
 

2-1 Matrices 
 

A 𝑚 × 𝑛 matrix has m rows and n columns arranged filled with entries from a field F (or ring 
R). 𝐴𝑖𝑗 = 𝐴(𝑖, 𝑗) denotes the entry in the ith column and jth row of A. Addition and scalar 

multiplication is defined component-wise: 
 𝐴 + 𝐵 𝑖𝑗 = 𝐴𝑖𝑗 + 𝐵𝑖𝑗  

 𝑐𝐴 𝑖𝑗 = 𝑐𝐴𝑖𝑗  

The 𝑛 × 𝑛 matrix of all zeros is denoted 𝒪𝑛  or just O. 
 

2-2 Matrix Multiplication and Inverses 
 
Matrix product: 

Let A be a 𝑚 × 𝑛 and B be a 𝑛 × 𝑝 matrix. The product AB is the 𝑚 × 𝑝 matrix with entries 

 𝐴𝐵 𝑖𝑗 =  𝐴𝑖𝑘𝐵𝑘𝑗

𝑛

𝑘=1

, 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑝 

Interpretation of the product AB: 
1. Row picture: Each row of A multiplies the whole matrix B. 
2. Column picture: A is multiplied by each column of B. Each column of AB is a linear 

combination of the columns of A, with the coefficients of the linear combination being 
the entries in the column of B. 

3. Row-column picture: (AB)ij is the dot product of row I of A and column j of B. 
4. Column-row picture: Corresponding columns of A multiply corresponding rows of B 

and add to AB. 
Block multiplication: Matrices can be divided into a rectangular grid of smaller matrices, or 
blocks. If the cuts between columns of A match the cuts between rows of B, then you can 
multiply the matrices by replacing the entries in the product formula with blocks (entry i,j is 
replaced with block i,j, blocks being labeled the same way as entries). 
 
The identity matrix In is a nxn square matrix with ones down the diagonal, i.e. 

 𝐼𝑛 𝑖𝑗 = 𝛿𝑖𝑗 =  
1 if 𝑖 = 𝑗
0 if 𝑖 ≠ 𝑗

  

 

A is invertible if there exists a matrix A-1 such that 𝐴𝐴−1 = 𝐴−1𝐴 = 𝐼. The inverse is unique, 
and for square matrices, any inverse on one side is also an inverse on the other side. 
 
Properties of Matrix Multiplication (A is mxn): 

1. 𝐴 𝐵 + 𝐶 = 𝐴𝐵 + 𝐴𝐶 Left distributive 

2.  𝐴 + 𝐵 𝐶 = 𝐴𝐶 + 𝐵𝐶 Right distributive 

3. 𝐼𝑚𝐴 = 𝐴 = 𝐴𝐼𝑛  Left/ right identity 

4. 𝐴 𝐵𝐶 =  𝐴𝐵 𝐶 Associative 

5. 𝑎 𝐴𝐵 =  𝑎𝐴 𝐵 = 𝐴(𝑎𝐵)  

6.  𝐴𝐵 −1 = 𝐵−1𝐴−1 (A, B invertible)  

𝐴𝐵 ≠ 𝐵𝐴: Not commutative 
Note that any 2 polynomials of the same matrix commute. 
 

A nxn matrix A is either a zero divisor (there exist nonzero matrices B, C such that 𝐴𝐵 =
𝐶𝐴 = 𝒪) or it is invertible. 



 
The Kronecker (tensor) product of pxq matrix A and rxs matrix B is 

𝐴⨂𝐵 =  

𝑎11𝐵 ⋯ 𝑎1𝑞𝐵

⋮ ⋱ ⋮
𝑎𝑝1𝐵 ⋯ 𝑎𝑝𝑞 𝐵

 . If v and w are column vectors with q, s elements, 

 𝐴⨂𝐵  𝑣⨂𝑤 = (𝐴𝑣)⨂(𝐵𝑤). Kronecker products give nice eigenvalue relations- for 
example the eigenvalues are the products of those of A and B. [AMM 107-6, 6/2000] 
 

2-3 Other Operations, Classification 
 

The transpose of a mxn matrix A, At, is defined by  𝐴𝑇 𝑖𝑗 = 𝐴𝑗𝑖 . 

The adjoint or Hermitian of a matrix A is its conjugate transpose: 

𝐴∗ = 𝐴𝐻 = 𝐴 𝑇 

Name Definition Properties 

Symmetric 𝐴 = 𝐴𝑇  

Self-adjoint/ Hermitian 𝐴 = 𝐴∗ 𝑧∗𝐴𝑧 is real for any complex z. 

Skew-symmetric −𝐴 = 𝐴𝑇  

Skew-self-adjoint/ Skew-Hermitian −𝐴 = 𝐴∗  

Upper triangular 𝐴𝑖𝑗 = 0 for 𝑖 > 𝑗  

Lower triangular 𝐴𝑖𝑗 = 0 for 𝑖 < 𝑗  

Diagonal 𝐴𝑖𝑗 = 0 for 𝑖 ≠ 𝑗  

 
Properties of Transpose/ Adjoint 

1.  𝐴𝐵 𝑇 = 𝐵𝑇𝐴𝑇 ,  𝐴𝐵 ∗ = 𝐵∗𝐴∗ (For more matrices, reverse the order.) 
2. (𝐴−1)𝑇 =  𝐴𝑇 −1 

3.  𝐴𝑥 𝑇𝑦 = 𝑥𝑇𝐴𝑇𝑦 = 𝑥𝑇(𝐴𝑇𝑦),  𝐴𝑥 ∗𝑦 = 𝑥∗𝐴∗𝑦 = 𝑥∗(𝐴∗𝑦) 

4. 𝐴𝑇𝐴 is symmetric. 
 

The trace of a 𝑛 × 𝑛 matrix A is the sum of its diagonal entries: 

tr 𝐴 =  𝐴𝑖𝑖

𝑛

𝑖=1

 

The trace is a linear operator, and tr 𝐴𝐵 = tr 𝐴 tr(𝐵). 
 
The direct sum 𝐴 ⊕ 𝐵 of 𝑚 × 𝑚 and 𝑛 × 𝑛 matrices A and B is the  𝑚 + 𝑛 × (𝑚 + 𝑛) 

matrix C given by 𝐶 =  
𝐴 𝑂
𝑂 𝐵

 , 

𝐶𝑖𝑗 =  

𝐴𝑖𝑗  for 1 ≤ 𝑖, 𝑗 ≤ 𝑛

𝐵𝑖−𝑚,𝑗−𝑚  for 𝑚 + 1 ≤ 𝑖, 𝑗 ≤ 𝑛 + 𝑚

0, else

  

 
  



3 Linear Transformations 
 

3-1 Linear Transformations 
 

For vector spaces V and W over F, a function 𝑇: 𝑉 → 𝑊 is a linear transformation 
(homomorphism) if for all 𝑥, 𝑦 ∈  𝑉 and 𝑐 ∈  𝐹, 
(a) 𝑇(𝑥 + 𝑦) = 𝑇(𝑥) + 𝑇(𝑦) 
(b) 𝑇(𝑐𝑥) = 𝑐𝑇(𝑥) 
 
It suffices to verify 𝑇(𝑐𝑥 + 𝑦) = 𝑐𝑇(𝑥) + 𝑇(𝑦). 
𝑇(0) = 0 is automatic. 

𝑇   𝑎𝑖𝑥𝑖

𝑛

𝑖=1

 =  𝑎𝑖𝑇(𝑥𝑖)

𝑛

𝑖=1

 

 
Ex. Rotation, reflection, projection, rescaling, derivative, definite integral 
Identity Iv and zero transformation T0 
 
An endomorphism (or linear operator) is a linear transformation from V into itself. 
 

T is invertible if it has an inverse T-1 satisfying 𝑇𝑇−1 = 𝐼𝑊 , 𝑇−1𝑇 = 𝐼𝑉 . If T is invertible, V 
and W have the same dimension (possibly infinite). 
Vector spaces V and W are isomorphic if there exists a invertible linear transformation (an 

isomorphism, or automorphism if V=W) 𝑇: 𝑉 → 𝑊. If V and W are finite-dimensional, they 

are isomorphic iff dim(V)=dim(W). V is isomorphic to 𝐹dim  V . 
 
The space of all linear transformations ℒ 𝑉, 𝑊 = Hom(𝑉, 𝑊) from V to W is a vector space 
over F. The inverse of a linear transformation and the composite of two linear 
transformations are both linear transformations. 
 
The null space or kernel is the set of all vectors x in V such that T(x)=0. 
𝑁 𝑇 = {𝑥 ∈ 𝑉|𝑇 𝑥 = 0} 
The range or image is the subset of W consisting of all images of vectors in V. 
𝑅 𝑇 = {𝑇(𝑥)|𝑥 ∈ 𝑉} 
Both are subspaces. nullity(T) and rank(T) denote the dimensions of N(T) and R(T), 
respectively. 
 
If 𝛽 = {𝑣1, 𝑣2 , … 𝑣𝑛} is a basis for V, then 𝑅 𝑇 = span({𝑇 𝑣1 , 𝑇 𝑣2 , …𝑇(𝑣𝑛)}). 
 
Dimension Theorem: If V is finite-dimensional, nullity(T)+rank(T)=dim(V). 

Pf. Extend a basis for N(T) to a basis for V by adding {𝑣𝑘+1, … , 𝑣𝑛}. Show {𝑇(𝑣𝑘+1), … , 𝑇(𝑣𝑛)} 
is a basis for R(T) by using linearity and linear independence. 
 
T is one-to-one iff N(T)={0}. 
 
If V and W have equal finite dimension, the following are equivalent: 
(a) T is one-to-one. 
(b) T is onto. 
(c) rank(T)=dim(V) 
(a) and (b) imply T is invertible. 
 



A linear transformation is uniquely determined by its action on a basis, i.e., if 𝛽 =
{𝑣1, 𝑣2 , … 𝑣𝑛} is a basis for V and 𝑤1, 𝑤2, …𝑤𝑛 ∈ 𝑊, there exists a unique linear 

transformation 𝑇: 𝑉 → 𝑊 such that 𝑇 𝑣𝑖 = 𝑤𝑖 , 𝑖 = 1,2, …𝑛. 
 
A subspace W of V is T-invariant if 𝑇(𝑥) ∈ 𝑊 for every 𝑥 ∈ 𝑊. TW denotes the restriction of 
T on W. 
 

3-2 Matrix Representation of Linear Transformation 
 
Matrix Representation: 

Let 𝛽 =  𝑣1, 𝑣2, … 𝑣𝑛  be an ordered basis for V and 𝛾 =  𝑤1, 𝑤2, …𝑤𝑛  be an ordered basis 
for W. For 𝑥 ∈ 𝑉, define 𝑎1, 𝑎2, … 𝑎𝑛  so that 

𝑥 =  𝑎𝑖𝑢𝑖

𝑛

𝑖=1

 

The coordinate vector of x relative to β is 

𝜙𝛽 𝑥 =  𝑥 𝛽 =  

𝑎1

𝑎2

⋮
𝑎𝑛

  

Note ϕβ is an isomorphism from V to Fn. The ith coordinate is 𝑓𝑖 𝑥 = 𝑎𝑖 . 

Suppose 𝑇: 𝑉 → 𝑊 is a linear transformation satisfying 

𝑇 𝑣𝑗  =  𝑎𝑖𝑗 𝑤𝑖  for 1 ≤ 𝑗 ≤ 𝑛

𝑚

𝑖=1

  

The matrix representation of T in β and γ is 𝐴 = [𝑇]𝛽
𝛾

= ℳ𝛽
𝛾

(𝑇) with entries as defined 

above. (i.e. load the coordinate representation of 𝑇 𝑣𝑗   into the jth column of A.) 

 
Properties of Linear Transformations (Composition) 

1. 𝑇 𝑈1 + 𝑈2 = 𝑇𝑈1 + 𝑇𝑈2 Left distributive 

2.  𝑈1 + 𝑈2 𝑇 = 𝑈1𝑇 + 𝑈2𝑇 Right distributive 

3. 𝐼𝑉𝑇 = 𝑇 = 𝑇𝐼𝑊 Left/ right identity 

4. 𝑆 𝑇𝑈 =  𝑆𝑇 𝑈 Associative (holds for any functions) 

5. 𝑎 𝑇𝑈 =  𝑎𝑇 𝑈 = 𝑇(𝑎𝑈)  

6.  𝑇𝑈 −1 = 𝑈−1𝑇−1 (T, U invertible)  

 
Linear transformations [over finite-dimensional vector spaces] can be viewed as left-
multiplication by matrices, so linear transformations under composition and their 
corresponding matrices under multiplication follow the same laws. This is a 
motivating factor for the definition of matrix multiplication. Facts about matrices, such 
as associativity of matrix multiplication, can be proved by using the fact that linear 
transformations are associative, or directly using matrices. 
 
Note: From now on, definitions applying to matrices can also apply to the linear 
transformations they are associated with, and vice versa. 
 

The left-multiplication transformation 𝐿𝐴: 𝐹𝑛 → 𝐹𝑚  is defined by 𝐿𝐴 𝑥 = 𝐴𝑥 (A is a mxn 
matrix). 
 
Relationships between linear transformations and their matrices: 

1. To find the image of a vector 𝑢 ∈ 𝑉 under T, multiply the matrix corresponding to T 



on the left:  𝑇 𝑢  𝛾 = [𝑇]𝛽
𝛾  𝑢 𝛽  i.e. 𝐿𝐴𝜙𝛽 = 𝜙𝛾𝑇 where 𝐴 = [𝑇]𝛽

𝛾
. 

2. Let V, W be finite-dimensional vector spaces with bases β, γ. The function 

Φ: ℒ 𝑉, 𝑊 → 𝑀𝑚×𝑛(𝐹) defined by Φ 𝑇 = [𝑇]𝛽
𝛾
 is an isomorphism. So, for linear 

transformations 𝑈, 𝑇: 𝑉 → 𝑊, 

a. [𝑇 + 𝑈]𝛽
𝛾

= [𝑇]𝛽
𝛾

+ [𝑈]𝛽
𝛾
 

b. [𝑎𝑇]𝛽
𝛾

= 𝑎[𝑇]𝛽
𝛾
 for all scalars a. 

c. ℒ 𝑉, 𝑊  has dimension mn. 

3. For vector spaces V, W, Z with bases α, β, γ and linear transformations 𝑇: 𝑉 → 𝑊,

𝑈: 𝑊 → 𝑍, [𝑈𝑇]𝛼
𝛾

= [𝑈]𝛽
𝛾

[𝑇]𝛼
𝛽
. 

4. T is invertible iff [𝑇]𝛽
𝛾
 is invertible. Then [𝑇−1]𝛾

𝛽
= ( 𝑇 

𝛽
𝛾

)−1. 

 

3-3 Change of Coordinates 
 
Let β and γ be two ordered bases for finite-dimensional vector space V. The change of 

coordinate matrix (from β-coordinates to γ-coordinates) is 𝑄 = [𝐼𝑉]𝛽
𝛾
. Write vector j of β in 

terms of the vectors of γ, take the coefficients and load them in the jth column of Q. (This is 
so (0,…1,…0) gets transformed into the jth column.) 

1. 𝑄−1 changes γ-coordinates into β-coordinates. 

2.  𝑇 𝛾 = 𝑄 𝑇 𝛽𝑄−1 

 

Two nxn matrices are similar if there exists an invertible matrix Q such that 𝐵 = 𝑄−1𝐴𝑄. 
Similarity is an equivalence relation. Similar matrices are manifestations of the same linear 
transformation in different bases. 
 

3-4 Dual Spaces 
 
A linear functional is a linear transformation from V to a field of scalars F. The dual space 
is the vector space of all linear functionals on V: 𝑉∗ = ℒ(𝑉, 𝐹). V** is the double dual. 
 
If V has ordered basis 𝛽 = {𝑥1, 𝑥2 , … 𝑥𝑛}, then 𝛽∗ =  𝑓1, 𝑓2, … 𝑓𝑛  (coordinate functions—the 

dual basis) is an ordered basis for V*, and for any 𝑓 ∈ 𝑉∗, 

𝑓 =  𝑓 𝑥𝑖 𝑓𝑖

𝑛

𝑖=1

 

 
To find the coordinate representations of the vectors of the dual bases in terms of the 
standard coordinate functions: 

1. Load the coordinate representations of the vectors in β into the columns of W. 

2. The desired representation are the rows of 𝑊−1. 
3. The two bases are biorthogonal. For an orthonormal basis (see section 5-5), the 

coordinate representations of the basis and dual bases are the same. 
 

Let V, W have ordered bases β, γ. For a linear transformation 𝑇: 𝑉 → 𝑊, define its 
transpose (or dual) 𝑇𝑡 : 𝑊∗ → 𝑉∗ by 𝑇𝑡 g = g𝑇. Tt is a linear transformation satisfying 

[𝑇𝑡]𝛾∗
𝛽∗

=   𝑇 
𝛽
𝛾
 
𝑡

. 

 
Define 𝑥 : 𝑉∗ → 𝐹 by 𝑥  f = f(𝑥), and 𝜓: 𝑉 → 𝑉∗∗ by 𝜓 𝑥 = 𝑥 . (The input is a function; the 
output is a function evaluated at a fixed point.) If V is finite-dimensional, ψ is an 



isomorphism. Additionally, every ordered basis for V* is the dual basis for some basis for V. 
 

The annihilator of a subset S of V is a subspace of 𝑉∗: 
𝑆0 = Ann(𝑆) = {𝑓 ∈ 𝑉∗|𝑓 𝑥 = 0 ∀ 𝑥 ∈ 𝑆} 

 
  



4 Systems of Linear Equations 
 

4-1 Systems of Linear Equations 
 
The system of equations  

 
𝑎11𝑥1 + ⋯ +𝑎𝑛1𝑥𝑛 = 𝑏1

⋮
𝑎𝑚1𝑥1 + ⋯𝑎𝑚𝑛 𝑥𝑛 = 𝑏𝑚

  

can be written in matrix form as Ax=b, where 𝐴 =  

𝑎11 ⋯ 𝑎𝑛1

⋮ ⋱ ⋮
𝑎𝑚1 ⋯ 𝑎𝑚𝑛

  and 𝑏 =  
𝑏1

⋮
𝑏𝑚

 . The 

augmented matrix is  𝐴 𝑏  (the entries of b placed to the right of A). 
The system is consistent if it has solution(s). It is singular if it has zero or infinitely many 
solutions. If b=0, the system is homogeneous. 
 

1. Row picture: Each equation gives a line/ plane/ hyperplane. They meet at the 
solution set. 

2. Column picture: The columns of A combine (with the coefficients 𝑥1 , … 𝑥𝑛 ) to produce 
b. 

 

4-2 Elimination 
 
There are three types of elementary row/ column operations: 

(1) Interchanging 2 rows/ columns 
(2) Multiplying any row/ column by a nonzero scalar 
(3) Adding any multiple of a row/ column to another row/ column 

An elementary matrix is the matrix obtained by performing an elementary operation on In. 
Any two matrices related by elementary operations are (row/column-)equivalent. 
 
Performing an elementary row/ column operation is the same as multiplying by the 
corresponding elementary matrix on the left/ right. The inverse of an elementary matrix 
is an elementary matrix of the same type. When an elementary row operation is performed 

on an augmented matrix or the equation 𝐴𝑥 = 𝑏, the solution set to the corresponding 
system of equations does not change. 
 
Gaussian elimination- Reduce a system of equations (line up the variables, the equations 
are the rows), a matrix, or an augmented matrix by using elementary row operations. 
Forward pass 

1. Start with the first row. 
2. Excluding all rows before the current row (row j), in the leftmost nonzero column 

(column k), make the entry in the current row nonzero by switching rows as 
necessary. (Type 1 operation) The pivot di is the first nonzero in the current row, the 
row that does the elimination. [Optional: divide the current row by the pivot to make 
the entry 1. (2)] 

3. Make all numbers below the pivot zero. To make the entry aik in the ith row 0, 

subtract row j times the multiplier 𝑙𝑖𝑘 = 𝑎𝑖𝑘 /𝑑𝑖   from row i. This corresponds to 
multiplication by a type 3 elementary matrix 𝑀𝑖𝑘 . 

4. Move on to the next row, and repeat until only zero rows remain (or rows are 
exhausted). 

Backward pass (Back-substitution) 
5. Work upward, beginning with the last nonzero row, and add multiples of each row to 



the rows above to create zeros in the pivot column. When working with equations, 
this is essentially substituting the value of the variable into earlier equations. 

6. Repeat for each preceding row except the first. 
 
A free variable is any variable corresponding to a column without a pivot. Free variables 
can be arbitrary, leading to infinitely many solutions. Express the solution in terms of free 
variables. 
If elimination produces a contradiction (in A|b, a row with only the last entry a nonzero, 
corresponding to 0=a), there is no solution. 
 
Gaussian elimination produces the reduced row echelon form of the matrix: (Forward/ 
backward pass accomplished 1, (2), 3/ 4.) 

1. Any row containing a nonzero entry precedes any zero row. 
2. The first nonzero entry in each row is 1. 
3. It occurs in a column to the right of the first nonzero entry in the preceding row. 
4. The first nonzero entry in each row is the only nonzero entry in its column. 

The reduced row echelon of a matrix is unique. 

 

4-3 Factorization 
 
Elimination = Factorization 
 
Performing Gaussian elimination on a matrix A is equivalent to multiplying A by a sequence 
of elementary row matrices. 
 
If no row exchanges are made, 𝑈 = ( 𝐸𝑖𝑗 )𝐴, so A can be factored in the form 

𝐴 =   𝐸𝑖𝑗
−1 𝑈 = 𝐿𝑈 

where L is a lower triangular matrix with 1’s on the diagonal and U is an upper triangular 

matrix (note the factors are in opposite order). Note 𝐸𝑖𝑗  and 𝐸𝑖𝑗
−1 differ only in the sign of 

entry (i,j), and the multipliers go directly into the entries of L. U can be factored into a 
diagonal matrix D containing the pivots and U’ an upper triangular matrix with 1’s on the 
diagonal: 

𝐴 = 𝐿𝐷𝑈′ 
The first factorization corresponds to the forward pass, the second corresponds to 

completing the back substitution. If A is symmetric, 𝑈′ = 𝐿𝑇. 
 

Using 𝐴 = 𝐿𝑈,  𝐿𝑈 𝑥 = 𝐴𝑥 = 𝑏 can be split into two triangular systems: 

1. Solve 𝐿𝑐 = 𝑏 for c. 
2. Solve 𝑈𝑥 = 𝑐 for x. 

 
A permutation matrix P has the rows of I in any order; it switches rows. 
If row exchanges are required, doing row exchanges 

1. in advance gives 𝑃𝐴 = 𝐿𝑈. 
2. after elimination gives 𝐴 = 𝐿1𝑃1𝑈1. 

 

4-4 The Complete Solution to Ax=b, the Four Subspaces 
 
The rank of a matrix A is the rank of the linear transformation LA, and the number of pivots 
after elimination. 
 



Properties: 
1. Multiplying by invertible matrices does not change the rank of a matrix, so 

elementary row and column matrices are rank-preserving. 
2. rank(At)=rank(A) 
3. Ax=b is consistent iff rank(A)=rank(A|b). 
4. Rank inequalities 

Linear transformations T, U Matrices A, B 

rank(TU) ≤ min(rank(T), rank(U)) rank(AB) ≤ min(rank(A), rank(B)) 

 
Four Fundamental Subspaces of A 

1. The row space C(AT) is the subspace generated by rows of A, i.e. it consists of all 
linear combinations of rows of A. 

a. Eliminate to find the nonzero rows. These rows are a basis for the row space. 
2. The column space C(A) is the subspace generated by columns of A. 

a. Eliminate to find the pivot columns. These columns of A (the original matrix) 
are a basis for the column space. The free columns are combinations of 
earlier columns, with the entries of F the coefficients. (See below) 

b. This gives a technique for extending a linearly independent set to a basis: Put 
the vectors in the set, then the vectors in a basis down the columns of A. 

3. The nullspace N(A) consists of all solutions to 𝐴𝑥 = 0. 
a. Finding the Nullspace (after elimination) 

i. Repeat for each free variable x: Set x=1 and all other free variables to 
0, and solve the resultant system. This gives a special solution for each 
free variable. 

ii. The special solutions found in (1) generate the nullspace. 
b. Alternatively, the nullspace matrix (containing the special solutions in its 

columns) is 𝑁 =  
−𝐹
𝐼

  when the row reduced echelon form is 𝑅 =  
𝐼 𝐹
0 0

 . If 

columns are switched in R, corresponding rows are switched in N. 

4. The left nullspace N(AT) consists of all solutions to 𝐴𝑇𝑥 = 0 or 𝑥𝑇𝐴 = 0. 
 
Fundamental Theorem of Linear Algebra (Part 1): 

Dimensions of the Four Subspaces: A is mxn, rank(A)=r (If the field is complex, replace 𝐴𝑇 

by 𝐴∗.) 



 
The relationships between the dimensions can be shown using pivots or the dimension 
theorem. 
 
The Complete Solution to Ax=b 

1. Find the nullspace N, i.e. solve Ax=0. 
2. Find any particular solution xp to Ax=b (there may be no solution). Set free variables 

to 0. 
3. The solution set is 𝑁 + 𝑥𝑝 ; i.e. all solutions are in the form 𝑥𝑛 + 𝑥𝑝 , where 𝑥𝑛  is in the 

nullspace and 𝑥𝑝  is a particular solution. 

 

4-5 Inverse Matrices 
 
A is invertible iff it is square (nxn) and any one of the following is true: 

1. 𝐴 has rank n, i.e. 𝐴 has n pivots. 
2. 𝐴𝑥 = 𝑏 has exactly 1 solution. 

3. Its columns/ rows are a basis for 𝐹𝑛 . 
 
Gauss-Jordan Elimination: If A is an invertible nxn matrix, it is possible to transform (A|In) 
into (In|A

-1) by elementary row operations. Follow the same steps as in Gaussian 
elimination, but on (A|In). If A is not invertible, then such transformation leads to a row 
whose first n entries are zeros. 
 

  

Row space 𝐶 𝐴𝑇  

• {𝐴𝑇𝑦} 

• Dimension r 

Nullspace 𝑁(𝐴) 

• {𝑥|𝐴𝑥 = 0} 

• Dimension n-r 

Column space 𝐶(𝐴) 

• {𝐴𝑥} 

• Dimension r 

Left nullspace 𝑁(𝐴𝑇) 

• {𝑦|𝐴𝑇𝑦 = 0} 

• Dimension m-r 

𝐹𝑛 = 𝐶 𝐴 𝑇⨁𝑁(𝐴) 

𝐹𝑚 = 𝐶(𝐴)⨁𝑁(𝐴𝑇) 

Row rank = column rank 



5 Inner Product Spaces 
 

5-1 Inner Products 
 

An inner product on a vector space V over F (ℝ or ℂ) is a function that assigns each 
ordered pair (𝑥, 𝑦) ∈ 𝑉 a scalar  𝑥, 𝑦 , such that for all 𝑥, 𝑦, 𝑧 ∈ 𝑉 and 𝑐 ∈ 𝐹, 

1.  𝑥 + 𝑧, 𝑦 =  𝑥, 𝑦 +  𝑧, 𝑦  
2.  𝑐𝑥, 𝑦 = 𝑐 𝑥, 𝑦  (The inner product is linear in its first component.) 

3.  𝑥, 𝑦        =  𝑦, 𝑥  (Hermitian) 
4.  𝑥, 𝑥 > 0 for 𝑥 > 0. (Positive) 

V is called an inner product space, also an Euclidean/ unitary space if F is ℝ/ ℂ. 
The inner product is conjugate linear in the second component: 

1.  𝑥, 𝑦 + 𝑧 =  𝑥, 𝑦 +  𝑥, 𝑧  
2.  𝑐𝑥, 𝑦 = 𝑐  𝑥, 𝑦  

If  𝑥, 𝑦 =  𝑥, 𝑧  for all 𝑥 ∈ 𝑉 then 𝑦 = 𝑧. 
 
The standard inner product (dot product) of 𝑥 = (𝑎1, … , 𝑎𝑛) and 𝑦 = (𝑏1, … , 𝑏𝑛) is 

𝑥 ⋅ 𝑦 =  𝑥, 𝑦 =  𝑎𝑖𝑏𝑖
 

𝑛

𝑖=1

 

The standard inner product for the space of continuous complex functions H on [0,2𝜋] is 

 𝑓, 𝑔 =
1

2𝜋
 𝑓 𝑡 𝑔(𝑡)      

2𝜋

0

𝑑𝑡 

 

A norm of a vector space is a real-valued function  ⋅  satisfying 

1.  𝑐𝑥 = 𝑐 𝑥 , 𝑐 ≥ 0 
2.  𝑥 ≥ 0, equality iff 𝑥 = 0. 
3. Triangle Inequality:  𝑥 + 𝑦 ≤  𝑥 +  𝑦  

The distance between two vectors x, y is  𝑥 − 𝑦 . 
 

In an inner product space, the norm (length) of a vector is  𝑥 =   𝑥, 𝑥 . 
 

Cauchy-Schwarz Inequality:   𝑥, 𝑦  ≤  𝑥  𝑦  
 

5-2 Orthogonality 
 
Two vectors are orthogonal (perpendicular) when their inner product is 0. A subset S is 
orthogonal if any two distinct vectors in S are orthogonal, orthonormal if additionally all 

vectors have length 1. Subspaces V and W are orthogonal if each 𝑣 ∈ 𝑉 is orthogonal to 

each 𝑤 ∈ 𝑊. The orthogonal complement 𝑉⊥(V perp) of V is the subspace containing all 

vectors orthogonal to V. (Warning: 𝑉⊥⊥ = 𝑉 holds when V is finite-dimensional, not 
necessarily when V is infinite-dimensional.) When an orthonormal basis is chosen, every 
inner product on finite-dimensional V is similar to the standard inner product. The 
conditions effectively determine what the inner product has to be. 
 

Pythagorean Theorem: If x and y are orthogonal,  𝑥 + 𝑦 2 =  𝑥 2 +  𝑦 2. 
 
Fundamental Theorem of Linear Algebra (Part 2): 
The nullspace is the orthogonal complement of the row space. 
The left nullspace is the orthogonal complement of the column space. 



5-3 Projections 
 
Take 1: Matrix and geometric viewpoint 

The [orthogonal] projection of 𝑏 onto 𝑎 is 

𝑝 =
 𝑏, 𝑎 

 𝑎 2
𝑎 =

𝑏 ⋅ 𝑎

𝑎 ⋅ 𝑎
𝑎 =

𝑎∗𝑏

𝑎∗𝑎 
𝑥 

𝑎 

The last two expressions are for (row) vectors in ℂ𝑛 , using the dot product. (Note: this 

shows that 𝑎 ⋅ 𝑏 =  𝑎  𝑏 cos 𝜃 for 2 and 3 dimensions.) 

Let 𝑆 be a finite orthogonal basis. A vector y is the sum of its projections onto the vectors of 
S: 

𝑦 =  
 𝑦, 𝑣 

 𝑣 2
𝑣

𝑣∈𝑆

 

Pf. Write y as a linear combination and take the inner product of y with a vector in the basis; 
use orthogonality to cancel all but one term. 
As a corollary, any orthogonal subset is linearly independent. 
 

To find the projection of 𝑏 onto a finite-dimensional subspace W, first find an orthonormal 
basis for W (see section 5-5), 𝛽. The projection is 

𝑝 =   𝑏, 𝑣  𝑣

𝑣∈𝛽

 

and the error is 𝑒 = 𝑏 − 𝑝. 𝑏 is perpendicular to 𝑒, and 𝑝 is the vector in W so that  𝑏 − 𝑝  is 
minimal. (Proof uses Pythagorean theorem) 
Bessel’s Inequality: (β a basis for a subspace) 

 
 𝑦,𝑣 2

 𝑣 2𝑣∈𝛽 ≤  𝑦 2, equality iff 𝑦 =  
 𝑦,𝑣 

 𝑣 2 𝑣𝑣∈𝛽  

 

If 𝛽 =  𝑣1, … , 𝑣𝑛  is an orthonormal basis, then for any linear transformation T,   𝑇 𝛽 
𝑖𝑗

=

 𝑇 𝑣𝑗  , 𝑣𝑖 . 

 
Alternatively: 
Let W be a subspace of ℂ𝑚  generated by the linearly independent set {𝑎1, … 𝑎𝑛}. Solving 

𝐴∗ 𝑏 − 𝐴𝑥  = 0 ⇒ 𝐴∗𝐴𝑥 = 𝐴∗𝑏, the projection of 𝑎 onto W is 

𝑝 = 𝐴𝑥 = 𝐴 𝐴∗𝐴 −1𝐴∗         
𝑃

𝑏 

where P is the projection matrix. In the special case that the set is orthonormal, 𝑄𝑥 ≈ 𝑏 ⇒
𝑥 = 𝑄𝑇𝑏, 𝑝 = 𝑄𝑄𝑇 

𝑃

𝑏 

 

A matrix P is a projection matrix iff 𝑃2 = 𝑃. 
 
Take 2: Linear transformation viewpoint 

If 𝑉 = 𝑊1 ⊕ 𝑊2 then the projection on W1 along W2 is defined by 
𝑇 𝑥 = 𝑥1  when 𝑥 = 𝑥1 + 𝑥2;  𝑥1 ∈ 𝑊1, 𝑥2 ∈ 𝑊2 

T is an orthogonal projection if 𝑅 𝑇 ⊥ = 𝑁(𝑇) and 𝑁 𝑇 ⊥ = 𝑅(𝑇). A linear operator T is an 

orthogonal projection iff 𝑇2 = 𝑇 = 𝑇∗. 
 

5-4 Minimal Solutions and Least Squares Approximations 
 

When 𝐴𝑥 = 𝑏 is consistent, the minimal solution is the one with least absolute value. 



1. There exists exactly one minimal solution s, and 𝑠 ∈ 𝐶(𝐴∗). 

2. s is the only solution to 𝐴𝑥 = 𝑏 in 𝐶(𝐴∗):  𝐴𝐴∗ 𝑢 = 𝑏 ⇒ 𝑠 = 𝐴∗𝑢 = 𝐴∗ 𝐴𝐴∗ −1𝑏. 
 

The least squares solution 𝑥  makes 𝐸 =  𝐴𝑥 − 𝑏 2 as small as possible. (Generally, 

𝐴𝑥 = 𝑏 is inconsistent.) Project b onto the column space of A. 
 
To find the real function in the form 𝑦(𝑡) =  𝐶𝑖𝑓𝑖(𝑡)𝑚

𝑖=1  for fixed functions 𝑓𝑖  that is closest to 

the points  𝑡1, 𝑦1 , …  𝑡𝑛 , 𝑦𝑛 , i.e. such that the error 𝑒 =  𝑒𝑖
2𝑛

𝑖=1 =   𝑦𝑖 − 𝑦 𝑡𝑖  
2𝑛

𝑖=1  is least, 

let A be the matrix with 𝐴𝑖𝑗 = 𝑓𝑖(𝑡𝑗 ), 𝑏 =  

𝑦1

⋮
𝑦𝑛

 . Then 𝐴𝑥 = 𝑏 is equivalent to the system 

𝑦 𝑡𝑖 = 𝑦𝑖 . Now find the projection of 𝑏 onto the columns of 𝐴, by multiplying by 𝐴𝑇 and 

solving 𝐴𝑇𝐴𝑥 = 𝐴𝑇𝑏. Here, p is the values estimated by the best-fit curve and e gives the 
errors in the estimates. 
 
Ex. Linear functions 𝑦 = 𝐶 + 𝐷𝑡: 

𝐴 =  
1 𝑡1

⋮ ⋮
1 𝑡𝑛

 .The equation 𝐴𝑇𝐴𝑥 = 𝐴𝑇𝑏 becomes  
𝑛  𝑡𝑖

 𝑡𝑖  𝑡𝑖
2  

𝐶
𝐷

 =  
 𝑦𝑖

 𝑡𝑖𝑦𝑖
 . 

A has orthogonal columns when  𝑡𝑖 = 0. To produce orthogonal columns, shift the times by 

letting 𝑇𝑖 = 𝑡𝑖 − 𝑡 = 𝑡𝑖 −
𝑡1+⋯+𝑡𝑛

𝑛
. Then 𝐴𝑇𝐴 is diagonal and 𝐶 =

 𝑦𝑖

𝑛
, 𝐷 =

 𝑦𝑖  𝑡𝑖

 𝑡𝑖
2 . The least 

squares line is 𝑦 = 𝐶 + 𝐷(𝑡 − 𝑡 ). 
 

 
5-5 Orthogonal Bases 

 
Gram-Schmidt Orthogonalization Process: 

Let 𝑆 =  𝑣1, … 𝑣𝑛  be a linearly independent subset of V. Define 𝑆′ =  𝑤1, …𝑤𝑛  by 𝑣1 = 𝑤1 
and 

𝑏 = 𝑝 + 𝑒 

Row space 𝐶 𝐴𝑇  

• {𝐴𝑇𝑦} 

• Dimension r 

Nullspace 𝑁(𝐴) 

• {𝑥|𝐴𝑥 = 0} 

• Dimension n-r 

Column space 𝐶(𝐴) 

• {𝐴𝑥} 

• Dimension r 

Left nullspace 𝑁(𝐴𝑇) 

• {𝑦|𝐴𝑇𝑦 = 0} 

• Dimension m-r 

𝑥𝑟  

𝑥𝑛  

𝑥 = 𝑥𝑟 + 𝑥𝑛  
 𝐶 𝐴 𝑇 ⊥ = 𝑁(𝐴)  𝐶(𝐴) ⊥ = 𝑁(𝐴𝑇) 

 

𝐴𝑥𝑟 = 𝑏 

𝐴𝑥 = 𝑏 

𝐴𝑥𝑛 = 0 

𝑏 

𝑝 

𝑒 

Least squares solution 

Minimal solution to 𝐴𝑥𝑟 = 𝑝 

𝐴+𝑝 = 𝑥𝑟  

𝐴+𝑒 = 0 

𝐴+𝑏 = 𝑥𝑟  



𝑣𝑘 = 𝑤𝑘 −  
 𝑦, 𝑣𝑗  

 𝑣𝑗
2 

𝑣𝑗

𝑘−1

𝑗 =1

 

Then S’ is an orthogonal set having the same span as S. To make S’ orthonormal, divide 

every vector by its length. (It may be easier to subtract the projections of 𝑤𝑙  on 𝑤𝑘  for all 

𝑙 > 𝑘 at step 𝑘, like in elimination.) 
 

Ex. Legendre polynomials 
1

 2
,  

3

2
𝑥,  

5

8
 3𝑥2 − 1 , … are an orthonormal basis for ℝ[𝑥] 

(integration from -1 to 1). 
 
Factorization A=QR 

From 𝑎1, … 𝑎𝑛 , Gram-Schmidt constructs orthonormal vectors 𝑞1, … 𝑞𝑛 . Then 

𝐴 = 𝑄𝑅 

 𝑎1 ⋯ 𝑎𝑛 =  𝑞1 ⋯ 𝑞𝑛  

𝑞1
∗𝑎1 𝑞1

∗𝑎2

0 𝑞2
∗𝑎2

⋯ 𝑞1
∗𝑎𝑛

⋱ 𝑞2
∗𝑎𝑛

⋮ ⋱
0 0

⋱ ⋮
⋯ 𝑞𝑛

∗𝑎𝑛

  

Note R is upper triangular. 
 

Suppose 𝑆 =  𝑣1, … 𝑣𝑘  is an orthonormal set in n-dimensional inner product space V. Then 
(a) S can be extended to an orthonormal basis {𝑣1, … 𝑣𝑛} for V. 

(b) If W=span(S), 𝑆1 = {𝑣𝑘+1, … 𝑣𝑛} is an orthonormal basis for 𝑊⊥. 

(c) Hence, 𝑉 = 𝑊 ⊕ 𝑊⊥ and dim 𝑉 = dim 𝑊 + dim⁡(𝑊⊥). 
 

5-6 Adjoints and Orthogonal Matrices 
 

Let V be a finite-dimensional inner product space over F, and let g: 𝑉 → 𝐹 be a linear 
transformation. The unique vector 𝑦 ∈ 𝑉 such that g 𝑥, 𝑦 =  𝑥, 𝑦  for all 𝑥 ∈ 𝑉 is given by 

𝑦 =  g(𝑣𝑖)       𝑣𝑖

𝑛

𝑖=1

 

 

Let 𝑇: 𝑉 → 𝑊 be a linear transformation, and β and γ be bases for inner product spaces V, 

W. Define the adjoint of T to be the linear transformation 𝑇∗: 𝑊 → 𝑉 such that  𝑇∗ 𝛾
𝛽

=

( 𝑇 
𝛽
𝛾

)∗. (See section 2.3) Then 𝑇∗ is the unique (linear) function such that  𝑇 𝑥 , 𝑦 𝑊 =

 𝑥, 𝑇∗ 𝑦  𝑉 for all 𝑥 ∈ 𝑉, 𝑦 ∈ 𝑊 and 𝑐 ∈ 𝐹. 
 
A linear operator T on V is an isometry if  𝑇(𝑥) =  𝑥  for all 𝑥 ∈ 𝑉. If V is finite-
dimensional, T is orthogonal for V real and unitary for V complex. The corresponding 
matrix representations, as well as properties of T, are described below. 
 

 Commutative property Inverse property Symmetry property 

Real Normal 

𝐴𝐴𝑇 = 𝐴𝑇𝐴 

Orthogonal 

𝐴𝑇𝐴 = 𝐼 
Symmetric 

𝐴𝑇 = 𝐴 

Complex Normal 

𝐴𝐴∗ = 𝐴∗𝐴 

Unitary 

𝐴∗𝐴 = 𝐼 
Self-adjoint/ Hermitian 

𝐴∗ = 𝐴 

Linear 
Transformation 

 𝑇𝑣, 𝑇𝑤 =  𝑇∗𝑣, 𝑇∗𝑤  
 𝑇𝑣 =  𝑇∗𝑥  

 𝑇𝑣, 𝑇𝑤 =  𝑣, 𝑤  
 𝑇𝑣 =  𝑣  
(𝑈𝑥)𝑇 𝑈𝑦 = 𝑥𝑇𝑦 

 𝑇𝑣, 𝑤 =  𝑣, 𝑇𝑤  



A real matrix 𝑄 has orthonormal columns iff 𝑄𝑇𝑄 = 𝐼. If 𝑄 is square it is called an 
orthogonal matrix, and its inverse is its transpose. 

A complex matrix 𝑈 has orthonormal columns iff 𝑈∗𝑈 = 𝐼. If 𝑈 is square it is a unitary 
matrix, and its inverse is its adjoint. 

If 𝑈 has orthonormal columns it leaves lengths unchanged ( 𝑈𝑥 =  𝑥  for every x) and 
preserves dot products (𝑈𝑥)𝑇 𝑈𝑦 = 𝑥𝑇𝑦. 

𝐴∗𝐴 is invertible iff A has linearly independent columns. More generally, 𝐴∗𝐴 has the same 
rank as A. 
 

5-7 Geometry of Orthogonal Operators 
 
A rigid motion is a function 𝑓: 𝑉 → 𝑉 satisfying  𝑓 𝑥 − 𝑓(𝑦) =  𝑥 − 𝑦  for all 𝑥, 𝑦 ∈ 𝑉. 
Each rigid motion is the composition of a translation and an orthogonal operator. 
 
A (orthogonal) linear operator is a 

1. rotation (around 𝑊⊥) if there exists a 2-dimensional subspace 𝑊 ⊆ 𝑉 and an 
orthonormal basis 𝛽 = {𝑥1, 𝑥2} for W, and 𝜃 such that 

𝑇   
𝑥1

𝑥2
  =  

cos 𝜃 sin 𝜃
− sin 𝜃 cos 𝜃

  
𝑥1

𝑥2
 . 

and 𝑇 𝑦 = 𝑦 for 𝑦 ∈ 𝑊⊥. 

2. reflection (about 𝑊⊥) if W is a one-dimensional subspace of V such that 𝑇 𝑥 = −𝑥 

for all 𝑥 ∈ 𝑊 and 𝑇 𝑦 = 𝑦 for all 𝑦 ∈ 𝑊⊥. 
 
Structural Theorem for Orthogonal Operators: 

1. Let T be an orthogonal operator on finite-dimensional real inner product space V. 
There exists a collection of pairwise orthogonal T-invariant subspaces {𝑊1, … , 𝑊𝑚} of 
V of dimension 1 or 2 such that 𝑉 = 𝑊1 ⊕ ⋯⊕ 𝑊𝑚 . Each 𝑇𝑊𝑖

 is a rotation or 

reflection; the number of reflections is even/ odd when det 𝑇 = 1/ det 𝑇 = −1. It is 
possible to choose the subspaces so there is 0 or 1 reflection. 

2. If A is orthogonal there exists orthogonal Q such that 

𝑄𝑇𝑄−1 =

 
 
 
 
 
 
𝐼𝑝

−𝐼𝑞
𝑅𝜃1

⋱
𝑅𝜃𝑛  

 
 
 
 
 

 where p, q are the dimensions of N(T-I), N(T+I) 

and 𝑅𝜃 =  
cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

 . 

 
Alternate method to factor QR: 

Q is a product of reflection matrices 𝐼 − 2𝑢𝑢𝑇 and plane rotation matrices (Givens rotation) 
in the form (1s on diagonal. Shown are rows/ columns i, j). 

𝑄𝑖𝑗 =

 
 
 
 
 
⋱

cos⁡(𝜃)

⋱

−sin⁡(𝜃)

sin⁡(𝜃) cos⁡(𝜃)

⋱  
 
 
 
 

 

Multiply by 𝑄𝑖𝑗  to produce 0 in the (i,j) position, as in elimination. 

  𝑄𝑖𝑗  𝐴 = 𝑅 ⇒ 𝐴 =   𝑄𝑖𝑗
−1 

       
𝑄

𝑅 

where the factors are reversed in the second product. 



6 Determinants 
 

6-1 Characterization 
 
The determinant (denoted  𝐴  or det⁡(𝐴)) is a function from the set of square matrices to 
the field F, satisfying the following conditions: 

1. The determinant of the nxn identity matrix is 1, i.e. det 𝐼 = 1. 

2. If two rows of A are equal, then det 𝐴 = 0, i.e. the determinant is alternating. 
3. The determinant is a linear function of each row separately, i.e. it is n-linear. That is, 

if 𝑎1, … 𝑎𝑛 , 𝑢, 𝑣 are rows with n elements, 

det

 

 
 
 
 

𝑎1

⋮
𝑎𝑟−1

𝑢 + 𝑘𝑣
𝑎𝑟+1

⋮
𝑎𝑛  

 
 
 
 

= det

 

 
 
 
 

𝑎1

⋮
𝑎𝑟−1

𝑢
𝑎𝑟+1

⋮
𝑎𝑛  

 
 
 
 

+ 𝑘 det⁡

 

 
 
 
 

𝑎1

⋮
𝑎𝑟−1

𝑣
𝑎𝑟+1

⋮
𝑎𝑛  

 
 
 
 

 

These properties completely characterize the determinant. 
4. The determinant changes sign when two rows are exchanged. 

5. Adding a multiple of one row to another row leaves det 𝐴  unchanged. 
6. A matrix with a row of zeros has det 𝐴 = 0. 
7. If A is triangular then det 𝐴 = 𝑎11𝑎22 ⋯𝑎𝑛𝑛  is the product of diagonal entries. 
8. A is singular iff det 𝐴 = 0. 
9. det 𝐴𝐵 = det 𝐴 det⁡(𝐵) 

10. 𝐴𝑇 has the same determinant as A. Therefore the preceding properties are true if 
―row‖ is replaced by ―column‖. 

 

6-2 Calculation 
 

1. The Big Formula: Use n-linearity and expand everything. 

det 𝐴 =  sgn(𝜎)𝐴1,𝜎 1 𝐴2,𝜎 2 ⋯𝐴𝑛,𝜎 𝑛 

𝜎∈𝔖𝑛

 

where the sum is over all 𝑛! permutations of {1,…n} and sgn 𝜎 =  
1, if 𝜎 is even
−1, if 𝜎 is odd

 . 

2. Cofactor Expansion: Recursive, useful with many zeros, perhaps with induction. 
(Row) 

det 𝐴 =  𝑎𝑖𝑗 𝐶𝑖𝑗

𝑛

𝑗 =1

=  𝑎𝑖𝑗  −1 𝑖+𝑗 det 𝑀𝑖𝑗  

𝑛

𝑗 =1

 

(Column) 

det 𝐴 =  𝑎𝑖𝑗 𝐶𝑖𝑗

𝑛

𝑖=1

=  𝑎𝑖𝑗  −1 𝑖+𝑗 det 𝑀𝑖𝑗  

𝑛

𝑖=1

 

 where 𝑀𝑖𝑗  is A with the ith row and jth column removed. 

3. Pivots: 

If the pivots are 𝑑1, 𝑑2 , … 𝑑𝑛 , and 𝑃𝐴 = 𝐿𝑈, (P a permutation matrix, L is lower 
triangular, U is upper triangular) 
det 𝐴 = det 𝑃 (𝑑1𝑑2 ⋯𝑑𝑛) where det(P)=1/ -1 if P corresponds to an even/ odd 
permutation. 

a. Let 𝐴𝑘  denote the matrix consisting of the first k rows and columns of A. If 



there are no row exchanges in elimination, 

𝑑𝑘 =
det 𝐴𝑘 

det 𝐴𝑘−1 
 

4. By Blocks: 

a.  
𝐴 𝐵
𝑂 𝐶

 =  A  𝐶  

b.  
𝐴 𝐵
𝐶 𝐷

 =  
𝐴 𝐵
𝑂 𝐷 − 𝐶𝐴−1𝐵

 =  𝐴  𝐷 − 𝐶𝐴−1𝐵  

 
Tips and Tricks 
Vandermonde determinant (look at when the determinant is 0, gives factors of polynomial) 

 

1 1
𝑥1 𝑥2

⋯ 1
⋯ 𝑥𝑛

⋮ ⋮
𝑥1

𝑛−1 𝑥2
𝑛−1

⋱ ⋮
⋯ 𝑥𝑛

𝑛−1

 =  (𝑥𝑖 − 𝑥𝑗 )

𝑖>𝑗

 

Circulant Matrix (find eigenvectors, determinant is product of eigenvalues) 

 

𝑎0 𝑎1

𝑎𝑛−1 𝑎0

⋯ 𝑎𝑛−1

⋯ 𝑎𝑛−2

⋮ ⋮
𝑎1 𝑎2

⋱ ⋮
⋯ 𝑎0

 =    𝑒
2𝜋𝑖
𝑛  

𝑗𝑘

𝑎𝑘

𝑛−1

𝑘=0

𝑛−1

𝑗 =0

 

 

𝑎1 𝑥
𝑥 𝑎2

⋯ 𝑥
⋯ 𝑥

⋮ ⋮
𝑥 𝑥

⋱ ⋮
⋯ 𝑎𝑛

 =  𝑎1 − 𝑥 ⋯  𝑎𝑛 − 𝑥 + 𝑥    𝑎𝑗 − 𝑥 

𝑗≠𝑖

𝑛

𝑖=1

 

                                    = 𝑥 𝑎1 − 𝑥 ⋯ 𝑎𝑛 − 𝑥  
1

𝑥
+

1

𝑎1 − 𝑥
+ ⋯ +

1

𝑎𝑛 − 𝑥
  

For a real matrix A, 

det 𝐼 + 𝐴2 =  det 𝐼 + 𝑖𝐴  2 ≥ 0 
If A has eigenvalues 𝜆1, … , 𝜆𝑛 , then 

det 𝐴 + 𝜆𝐼 =  𝜆1 + 𝜆 ⋯ (𝜆𝑛 + 𝜆) 
In particular, if M has rank 1, 

det 𝐼 + 𝑀 = 1 + tr 𝑀  
 

6-3 Properties and Applications 
 
Cramer’s Rule: 

If A is a nxn matrix and det 𝐴 ≠ 0 then 𝐴𝑥 = 𝑏 has the unique solution given by 

𝑥𝑖 =
det⁡(𝐵𝑖)

det⁡(𝐴)
, 1 ≤ 𝑖 ≤ 𝑛 

Where 𝐵𝑖  is A with the ith column replaced by b. 
 
Inverses: 
Let C be the cofactor matrix of A. Then 

𝐴−1 =
𝐶𝑇

det⁡(𝐴)
 

 
The cross product of 𝑢 =  𝑢1, 𝑢2, 𝑢3  and 𝑣 = (𝑣1, 𝑣2, 𝑣3) is 

𝑢 × 𝑣 =  
𝑖 𝑗 𝑘
𝑢1 𝑢2 𝑢3

𝑣1 𝑣2 𝑣3

  

a vector perpendicular to u and v (direction determined by the right-hand rule) with length 



 𝑢  𝑣  sin 𝜃 . 
 
Geometry: 
The area of a parallelogram with vertices sides  𝑥1, 𝑦1 ,  𝑥2, 𝑦2  is  

𝑥1 𝑦1

𝑥2 𝑦2
 . (Oriented areas 

satisfy the same properties as determinants.) 
The area of a parallelepiped with sides 𝑢 =  𝑢1, 𝑢2 , 𝑢3 , 𝑣 = (𝑣1, 𝑣2, 𝑣3), and 𝑢 =  𝑤1, 𝑤2, 𝑤3  

is  𝑢 × 𝑣 ⋅ 𝑤 =  

𝑢1 𝑢2 𝑢3

𝑣1 𝑣2 𝑣3

𝑤1 𝑤2 𝑤3

  

The Jacobian used to change coordinate systems in integrals is  
 

𝜕𝑥

𝜕𝑢

𝜕𝑥

𝜕𝑣

𝜕𝑥

𝜕𝑤
𝜕𝑦

𝜕𝑢

𝜕𝑦

𝜕𝑣

𝜕𝑦

𝜕𝑤
𝜕𝑧

𝜕𝑢

𝜕𝑧

𝜕𝑣

𝜕𝑧

𝜕𝑤

 
 . 

 
  



7 Eigenvalues and Eigenvectors, Diagonalization 
 

7-1 Eigenvalues and Eigenvectors 

 

Let T be a linear operator (or matrix) on V. A nonzero vector 𝑣 ∈ 𝑉 is an (right) eigenvector 
of T if there exists a scalar 𝜆, called the eigenvalue, such that 𝑇 𝑣 = 𝜆𝑣. The eigenspace 
of λ is the set of all eigenvectors corresponding to λ: 𝐸𝜆 = {𝑥 ∈ 𝑉|𝑇 𝑥 = 𝜆𝑥}. 
 
The characteristic polynomial of a matrix A is det⁡(𝐴 − 𝜆𝐼). The zeros of the polynomial are 

the eigenvalues of A. For each eigenvalue solve 𝐴𝑣 = 𝜆𝑣 to find linearly independent 
eigenvalues that span the eigenspace. 
 

Multiplicity of an eigenvalue λ: 
1. Algebraic (𝜇𝑎𝑙𝑔 )- the multiplicity of the root λ in the characteristic polynomial of A. 

2. Geometric (𝜇𝑔𝑒𝑜𝑚 )- the dimension of the eigenspace of λ. 1 ≤ dim 𝐸𝜆 ≤ 𝜇𝑎𝑙𝑔 (𝜆). 

dim 𝐸𝜆 = dim 𝑁 𝐴 − 𝜆𝐼  = 𝑛 − rank(𝐴 − 𝜆𝐼). 

 
For real matrices, complex eigenvalues come in conjugate pairs. 
 
The product of the eigenvalues (counted by algebraic multiplicity) equals det⁡(𝐴). 
The sum of the eigenvalues equals the trace of A. 
 
An eigenvalue of 0 implies that A is singular. 
 
Spectral Mapping Theorem: 

Let A be a nxn matrix with eigenvalues 𝜆1, … , 𝜆𝑛  (not necessarily distinct, counted according 
to algebraic multiplicity), and P be a polynomial. Then the eigenvalues of 𝑃(𝐴) are 

𝑃 𝜆1 , … , 𝑃 𝜆𝑛 . 
 
Gerschgorin’s Disk Theorem: 
Every eigenvalue of A is strictly in a circle in the complex plane centered at some diagonal 

entry 𝐴𝑖𝑖  with radius 𝑟𝑖 =   𝑎𝑖𝑗  𝑗≠𝑖  (because  𝜆 − 𝐴𝑖𝑖 𝑥𝑖 =  𝑎𝑖𝑗 𝑥𝑗 )𝑗≠𝑖 . 

 
Perron-Frobenius Theorem: 
Any square matrix with positive entries has a unique eigenvector with positive entries (up to 
multiplication by a positive factor), and the corresponding eigenvalue has multiplicity one 
and has strictly greater absolute value than any other eigenvalue. 
Generalization: Holds for any irreducible matrix with nonnegative entries, i.e. there is no 
reordering of rows and columns that makes it block upper triangular. 
 

A left eigenvalue of A satisfies 𝑣𝑇𝐴 = 𝜆𝑣 instead. Biorthogonality says that any right 

eigenvector of A associated with λ is orthogonal to all left eigenvectors of A associated with 
eigenvalues other than λ. 
 

7-2 Invariant and T-Cyclic Subspaces 
 

The subspace 𝐶𝑥 = 𝑍(𝑥; 𝑇) = 𝑊 = span( 𝑥. 𝑇 𝑥 , 𝑇2 𝑥 , …  ) is the T-cyclic subspace 
generated by x. W is the smallest T-invariant subspace containing x. 

1. If W is a T-invariant subspace, the characteristic polynomial of TW divides that of T. 

2. If k=dim(W) then 𝛽𝑥 = {𝑥, 𝑇 𝑥 , … , 𝑇𝑘−1 𝑥 } is a basis for W, called the T-cyclic basis 



generated by x. If  𝑎𝑖𝑇
𝑖(𝑥)𝑘

𝑖=0 = 0 with 𝑎𝑘 = 1, the characteristic polynomial of TW is 

 −1 𝑘  𝑎𝑖𝑡
𝑖𝑘

𝑖=0 . 

3.  If 𝑉 = 𝑊1⨁𝑊2 ⋯ 𝑊𝑘 , each 𝑊𝑖  is a T-invariant subspace, and the characteristic 

polynomial of 𝑇𝑊𝑖
 is 𝑓𝑖(𝑡), then the characteristic polynomial of T is  𝑓𝑖(𝑡)𝑘

𝑖=1 . 

 
Cayley-Hamilton Theorem: 
A satisfies its own characteristic equation: if 𝑓(𝑡) is the characteristic polynomial of A, then 

𝑓 𝐴 = 𝒪. 

 

7-3 Triangulation 
 
A matrix is triangulable if it is similar to an upper triangular matrix. 
(Schur) A matrix is triangulable iff the characteristic polynomial splits over F. A real/ 
complex matrix A is unitarily/ orthogonally equivalent to a real/ complex upper triangular 

matrix. (i.e. 𝐴 = 𝑄𝑇𝑄−1, Q is orthogonal/ unitary) 
Pf. T=LA has an eigenvalue iff T* has. Induct on dimension n. Choose an eigenvector z of 

T*, and apply the induction hypothesis to the T-invariant subspace span 𝑧 ⊥. 

 

7-4 Diagonalization 
 
T is diagonalizable if there exists an ordered basis 𝛽 for V such that  𝑇 𝛽  is diagonal. A is 

diagonalizable if there exists an invertible matrix S such that 𝑆−1𝐴𝑆 = Λ is a diagonal matrix. 
 
Let 𝜆1, … , 𝜆𝑘  be the eigenvalues of A. Let 𝑆𝑖  be a linearly independent subset of 𝐸𝜆𝑖

 for 

1 ≤ 𝑖 ≤ 𝑘. Then  𝑆𝑖  is linearly independent. (Loosely, eigenvectors corresponding to 
different eigenvalues are linearly independent.) 
 
T is diagonalizable iff both of the following are true: 

1. The characteristic polynomial of T splits (into linear factors). 
2. For each eigenvalue, the algebraic and geometric multiplicities are equal. Hence 

there are n linearly independent eigenvectors 
T is diagonalizable iff V is the direct sum of eigenspaces of T. 
 
To diagonalize A, put the 𝑛 linearly independent eigenvectors into the columns of A. Put the 

corresponding eigenvalues into the diagonal entries of Λ. Then 

𝐴 = 𝑆Λ𝑆−1 or 𝑄𝐷𝑄−1 
For a linear transformation, this corresponds to 

 𝑇 𝛽 =  𝐼 𝛾
𝛽  𝑇 𝛾  𝐼 𝛽

𝛾
 

 
Simultaneous Triangulation and Diagonalization 
Commuting matrices share eigenvectors, i.e. given that A and B can be diagonalized, there 

exists a matrix S that is an eigenvector matrix for both of them iff 𝐴𝐵 = 𝐵𝐴. Regardless, AB 
and BA have the same set of eigenvalues, with the same multiplicities. 

More generally, let 𝔉 be a commuting family of triangulable/ diagonalizable linear operators 
on V. There exists an ordered basis for V such that every operator in 𝔉 is simultaneously 
represented by a triangular/ diagonal matrix in that basis. 
 

7-5 Normal Matrices 
(For review see 5-6) 



A nxn [real] symmetric matrix: 
1. Has only real eigenvalues. 

2. Has eigenvalues that can be chosen to be orthonormal. (𝑆 = 𝑄, 𝑄−1 = 𝑄𝑇) (See 
below.) 

3. Has n linearly independent eigenvectors so can be diagonalized. 
4. The number of positive/ negative eigenvalues equals the number of positive/ 

negative pivots. 
 
For real/ complex finite-dimensional inner product spaces, T is symmetric/ normal iff there 
exists an orthonormal basis for V consisting of eigenvectors of T. 
 
Spectral Theorem (Linear Transformations) 
Suppose T is a normal linear operator (𝑇∗𝑇 = 𝑇𝑇∗) on a finite-dimensional real/ complex 

inner product space V with distinct eigenvalues 𝜆1, … , 𝜆𝑛  (its spectrum). Let 𝑊𝑖  be the 
eigenspace of T corresponding to 𝜆𝑖  and 𝑇𝑖  the orthogonal projection of 𝑉 on 𝑊𝑖 . 

1. T is diagonalizable and 𝑉 = 𝑊1 ⊕ ⋯ ⊕ 𝑊𝑛 . 
2. 𝑊𝑖  is orthogonal to the direct sum of 𝑊𝑗  with 𝑗 ≠ 𝑖. 

3. There is an orthonormal basis of eigenvectors. 

4. Resolution of the identity operator: 𝐼 = 𝑇1 + ⋯ + 𝑇𝑛  
5. Spectral decomposition: 𝑇 = 𝜆1𝑇1 + ⋯ + 𝜆𝑘𝑇𝑛  

Pf. The triangular matrix in the proof of Schur’s Theorem is actually diagonal. 

1. If 𝐴𝑥 = 𝜆𝑥 then 𝐴∗𝑥 = 𝜆 𝑥. 

2. W is T-invariant iff 𝑊⊥ is 𝑇∗-invariant. 
3. Take a eigenvector v; let 𝑊 = span 𝑣 . From (1) v is an eigenvector of 𝑇∗; from (2) 

𝑊⊥   is T-invariant. 

4. Write 𝑉 = 𝑊 ⊕ 𝑊⊥. Use induction hypothesis on 𝑊⊥. 
 
(Matrices) 
Let A be a normal matrix (𝐴∗𝐴 = 𝐴𝐴∗). Then A is diagonalizable with an orthonormal basis 
of eigenvectors: 

𝐴 = 𝑈Λ𝑈∗ 

where Λ is diagonal and U in unitary. 
 

Type of Matrix Condition Factorization 

Hermitian (Self-adjoint) 𝐴∗ = 𝐴 𝐴 = 𝑈Λ𝑈−1 
U unitary, Λ real diagonal 
Real eigenvalues (because 

𝜆𝑣∗𝑣 = 𝑣∗𝐴𝑣 = 𝜆 𝑣∗𝑣) 

Unitary 𝐴∗𝐴 = 𝐼 𝐴 = 𝑈Λ𝑈−1 
U unitary, Λ diagonal 
Eigenvalues have absolute 
value 1 

Symmetric (real) 𝐴𝑇 = 𝐴 𝐴 = 𝑄Λ𝑄−1 
Q orthogonal, Λ real 
diagonal 
Real eigenvalues 

Orthogonal (real) 𝐴𝑇𝐴 = 𝐼 𝐴 = 𝑄Λ𝑄−1 
Q unitary, Λ diagonal 
Eigenvalues have absolute 
value 1 

 



7-6 Positive Definite Matrices and Operators 
 

A real matrix A is positive (semi)definite if 𝑥∗𝐴𝑥 > 0 (𝑥∗𝐴𝑥 ≥ 0) for every nonzero vector x. 
A linear operator T on a finite-dimensional inner product space is positive (semi)definite if T 

is self-adjoint and  𝑇 𝑥 , 𝑥 > 0 ( 𝑇 𝑥 , 𝑥 ≥ 0) for all 𝑥 ≠ 0. 
 
The following are equivalent: 

1. A is positive definite. 
2. All eigenvalues are positive. 
3. All upper left determinants are positive. 
4. All pivots are positive. 

 
Every positive definite matrix factors into 

𝐴 = 𝐿𝐷𝑈′ = 𝐿𝐷𝐿𝑇 
with positive pivots in D. The Cholesky factorization is 

𝐴 =  𝐿 𝐷  𝐿 𝐷 
𝑇
 

 

7-7 Singular Value Decomposition 
 

Every 𝑚 × 𝑛 matrix A has a singular value decomposition in the form 

𝐴𝑉 = 𝑈Σ ⇒ 𝐴 = 𝑈Σ𝑉−1 = 𝑈Σ𝑉∗ 

where U and V are unitary matrices and 𝛴 =  
𝜎1

⋱
𝜎𝑛

  is diagonal. The singular values 

𝜎1, … 𝜎𝑟  (𝜎𝑘 = 0 for 𝑘 > 𝑟 = rank(𝐴)) are positive and are in decreasing order, with zeros at 
the end (not considered singular values). 

If A corresponds to the linear transformation 𝑇: 𝑉 → 𝑊, then this says there are orthonormal 
bases 𝛽 = {𝑣1, … , 𝑣𝑛} and 𝛾 = {𝑢1, … , 𝑢𝑚 } such that 

𝑇 𝑣𝑖 =  
𝜎𝑖𝑢𝑖  if 1 ≤ 𝑖 ≤ 𝑟

0 if 𝑖 > 𝑟
  

Letting 𝛽′ , 𝛾′ be the standard ordered bases for V, W, 

𝐴𝑉 = 𝑈Σ ⇔  𝑇 
𝛽 ′
𝛾′  𝐼 𝛽

𝛽′
=  𝐼 𝛾

𝛾′  𝑇 
𝛽
𝛾
 

Orthogonal elements in the basis are sent to orthogonal elements; the singular values give 
the factors the lengths are multiplied by. 
 
To find the SVD: 

1. Diagonalize 𝐴∗𝐴, choosing orthonormal eigenvectors. The eigenvalues are the 
squares of the singular values and the eigenvector matrix is V. 

𝐴∗𝐴 = 𝑉Σ2𝑉∗ = 𝑉  
𝜎1

2

⋱
𝜎𝑛

2

 𝑉∗  

2. Similarly, 

𝐴𝐴∗ = 𝑈Σ2𝑈∗ 
If V and the singular values have already been found, the columns of U are just the 
images of 𝑣1 , … , 𝑣𝑛  under left multiplication by A: 𝑢𝑖 = 𝐴𝑣𝑖 , unless this gives 0. 

3. If A is a mxn matrix: 
a. The first r columns of V generate the row space of A. 
b. The last n-r columns generate the nullspace of A. 
c. The first r columns of U generate the column space of A. 
d. The last m-r columns of U generate the left nullspace of A. 



 
The pseudoinverse of a matrix A is the matrix 𝐴+ such that for 𝑦 ∈ 𝐶(𝐴), 𝐴+𝑦 is the vector 

x in the row space such that 𝐴𝑥 = 𝑦, and for 𝑦 ∈ 𝑁(𝐴𝑇), 𝐴+𝑦 = 0. For a linear 

transformation, replace 𝐶(𝐴) with 𝑅(𝑇) and 𝑁(𝐴𝑇) with 𝑅 𝑇 ⊥. In other words, 

1. 𝐴𝐴+ is the projection matrix onto the column space of A. 
2. 𝐴+𝐴 is the projection matrix onto the row space of A. 

 
Finding the pseudoinverse: 

𝐴+ = 𝑉Σ+𝑈∗ = 𝑉  

𝜎1
−1

⋱
𝜎𝑟

−1  𝑈∗ 

 

The shortest least squares solution to 𝐴𝑥 = 𝑏 is 𝑥+ = 𝐴+𝑏. 
See Section 5-4 for a picture. 
 
The polar decomposition of a complex (real) matrix A is 

𝐴 = 𝑄𝐻 
where Q is unitary (orthogonal) and H is semi-positive definite Hermitian (symmetric). Use 
the SVD: 

𝐴 =  𝑈𝑉∗ (𝑉Σ𝑉∗) 
If A is invertible, Q is positive definite and the decomposition is unique. 
 

 Summary 
 

Type of matrix Eigenvalues Eigenvectors (can be chosen…) 

Real symmetric Real 

Orthogonal 
Orthogonal Absolute value 1 

Skew-symmetric (Pure) Imaginary 

Self-adjoint Real 

Positive definite Positive 

  
  



8 Canonical Forms 
 
A canonical form is a standard way of presenting and grouping linear transformations or 
matrices. Matrices sharing the same canonical form are similar; each canonical form 
determines an equivalence class. 
Similar matrices share… 

 Eigenvalues 

 Trace and determinant 

 Rank 

 Number of independent eigenvectors 

 Jordan/ Rational canonical form 
 

8-1 Decomposition Theorems 
 
A minimal polynomial of T is the (unique) monic polynomial 𝑝(𝑡) of least positive degree 

such that 𝑝 𝑇 = 𝑇0. If 𝑔 𝑇 = 𝑇0 then 𝑝 𝑡 |𝑔(𝑡); in particular, 𝑝(𝑡) divides the characteristic 
polynomial of T. 
 

Let W be an invariant subspace for T and let 𝑥 ∈ 𝑉. The T-conductor (―T-stuffer‖) of x into 
W is the set 𝑆𝑇(𝑥; 𝑊) which consists of all polynomials g over F such that (𝑔 𝑇 )(𝑥) ∈ 𝑊. (It 
may also refer to the monic polynomial of least degree satisfying the condition.) 
If 𝑊 = {0}, T is called the T-annihilator of x, i.e. it is the (unique) monic polynomial 𝑝(𝑡) of 

least degree for which 𝑝 𝑇  𝑥 = 0. The T-conductor/ annihilator divides any other 
polynomial with the same property. 

The T-annihilator 𝑝 𝑡  is the minimal polynomial of TW, where W is the T-cyclic subspace 
generated by x. The characteristic polynomial and minimal polynomial of TW are equal or 
negatives. 
 
Let L be a linear operator on V, and W a subspace of V. W is T-admissible if 

1. W is invariant under T. 
2. If 𝑓 𝑇 𝑥 ∈ 𝑊, there exists 𝑦 ∈ 𝑊 such that 𝑓 𝑇 (𝑥) = 𝑓 𝑇 (𝑦). 

 
Let T be a linear operator on finite-dimensional V. 
Primary Decomposition Theorem (leads to Jordan form): 
Suppose the minimal polynomial of T is  

𝑝 𝑡 =  𝑝𝑖
𝑟𝑖

𝑘

𝑖=1

 

where 𝑝𝑖  are distinct irreducible monic polynomials and 𝑟𝑖  are positive integers. Let 𝑊𝑖  be 
the null space of 𝑝𝑖 𝑇 𝑟𝑖 . Then  

1. 𝑉 = 𝑊1 ⊕ ⋯⊕ 𝑊𝑘 . 
2. Each 𝑊𝑖  is invariant under T. 

3. The minimal polynomial of 𝑇𝑊𝑖
 is 𝑝𝑖

𝑟𝑖 . 

Pf. Let 𝑓𝑖 =
𝑝

𝑝
𝑖

𝑟𝑖
. Find 𝑔𝑖  so that  𝑓𝑖𝑔𝑖

𝑛
𝑖=1 = 1. 𝐸𝑖 = 𝑓𝑖 𝑇 𝑔𝑖(𝑇) is the projection onto 𝑊𝑖 . 

 
Cyclic Decomposition Theorem (leads to rational canonical form): 
Let T be a linear operator on finite-dimensional V and 𝑊0 (often taken to be {0}) a proper T-

admissible subspace of V. There exist nonzero 𝑥1, … 𝑥𝑟  with (unique) T-annihilators 
𝑝1, … , 𝑝𝑟 , called invariant factors such that 



1. 𝑉 = 𝑊0 ⊕ 𝑍 𝑥1; 𝑇 ⊕ ⋯ ⊕ 𝑍(𝑥𝑟 ; 𝑇) 

2. 𝑝𝑘 |𝑝𝑘−1 for 2 ≤ 𝑘 ≤ 𝑟. 
Pf. 

1. There exist nonzero vectors 𝛽1, … , 𝛽𝑟  in V such that 
a. 𝑉 = 𝑊0 + 𝑍 𝛽1; 𝑇 + ⋯ + 𝑍 𝛽𝑟 ; 𝑇  
b. If 1 ≤ 𝑘 ≤ 𝑟 and 𝑊𝑘 = 𝑊0 + 𝑍 𝛽1; 𝑇 + ⋯ + 𝑍(𝛽𝑘 ; 𝑇) then 𝑝𝑘  has maximum 

degree among all T-conductors into 𝑊𝑘−1. 
2. Let 𝑓 = 𝑠(𝛽; 𝑊𝑘−1). If 𝑓 𝑇 (𝛽) = 𝛽0 +  𝑔𝑖 𝑇 (𝛽𝑖)1≤𝑖<𝑘 , 𝛽𝑖 ∈ 𝑊𝑖  then 𝑔𝑖 = 𝑓𝑕𝑖  for 

some 𝑕𝑖  and 𝑓 = 𝑓 𝑇 (𝛾0) for some 𝛾0 ∈ 𝑊0. (Stronger form of condition that each 𝑊𝑖  
is T-admissible.) 

3. Existence: Let 𝑥𝑘 = 𝛽𝑘 − 𝛾0 −  𝑕𝑖𝛽𝑖1≤𝑖<𝑘 . 𝛽𝑘 − 𝑥𝑘 ∈ 𝑊𝑘−1, 𝛽𝑘 ∈ 𝑊𝑘  implies 
𝑠 𝑥𝑘 ; 𝑊𝑘−1 = 𝑠 𝛽𝑘 ; 𝑊𝑘−1 = 𝑝𝑘  and 𝑊𝑘 = 𝑊0 + 𝑍 𝑥1; 𝑇 + ⋯ + 𝑍(𝑥𝑘 ; 𝑇). 

4. Uniqueness: Induct. Show 𝑝1 is unique. If 𝑝𝑖  is unique, operate 𝑝𝑖+1 on both sides of 
2 decompositions of V to show that 𝑝𝑖+1|𝑞𝑖+1 and vice versa. 

 

8-2 Jordan Canonical Form 
 
 𝑇 𝛽  is a Jordan canonical form of T if 

 𝑇 𝛽 =  

𝐴1 𝑂
𝑂 𝐴2

⋯ 𝑂
⋯ 𝑂

⋮ ⋮
𝑂 𝑂

⋱ ⋮
⋯ 𝐴𝑛

  

where each 𝐴𝑖  is a Jordan block in the form 

 
 
 
 
 
𝜆 1
0 𝜆

⋯ 0 0
⋯ 0 0

⋮ ⋮
0 0
0 0

⋱ ⋮ ⋮
⋯ 𝜆 1
⋯ 0 𝜆 

 
 
 
 

 

with λ an eigenvalue. 
 

Nonzero 𝑥 ∈ 𝑉 is a generalized eigenvector corresponding to λ if  𝑇 − 𝜆𝐼 𝑝 𝑥 = 0 for 
some p. The generalized eigenspace consists of all generalized eigenvectors 

corresponding to λ: 
𝐾𝜆 = {𝑥 ∈ 𝑉| 𝑇 − 𝜆𝐼 𝑝 𝑥 = 0 for some positive integer 𝑝} 

 

If 𝑝 is the smallest positive integer so that  𝑇 − 𝜆𝐼 𝑝 𝑥 = 0, 

{ 𝑇 − 𝜆𝐼 𝑝−1 𝑥 , … ,  𝑇 − 𝜆𝐼  𝑥 , 𝑥} 

is a cycle of generalized eigenvectors corresponding to λ. Every such cycle is linearly 
independent. 
 
Existence 

𝐾𝜆  (the 𝑊𝑖  in the Primary Decomposition Theorem) has an ordered basis consisting of a 
union of disjoint cycles of generalized eigenvectors corresponding to λ. Thus every linear 
transformation (or matrix) on a finite-dimensional vector space, whose characteristic 
polynomial splits, has a Jordan canonical form. V is the direct sum of the generalized 
eigenspaces of T. 
 
Uniqueness and Structure 
The Jordan canonical form is unique (when cycles are listed in order of decreasing length) 
up to ordering of eigenvalues. 
Suppose 𝛽𝑖  is a basis for 𝐾𝜆𝑖

. Let 𝑇𝑖  be the restriction of 𝑇 to 𝐾𝜆𝑖
. Suppose 𝛽𝑖  is a disjoint 



union of cycles of generalized eigenvectors 𝛾1, … , 𝛾𝑛𝑖
 with lengths 𝑝1 ≥ ⋯ ≥ 𝑝𝑛𝑖

. The dot 

diagram for 𝑇𝑖  contains one dot for each vector in 𝛽𝑖 , and 

1. has 𝑛𝑖  columns, one for each cycle. 
2. The jth column consists of 𝑝𝑗  dots that correspond to the vectors of 𝛾𝑗 , starting with 

the initial vector. 
The dot diagram of 𝑇𝑖  is unique: The number of dots in the first r rows equals nullity( 𝑇 −
𝜆𝑖𝐼𝑟), or if 𝑟𝑗 is the number of dots in the jth row, 𝑟𝑗=rank𝑇−𝜆𝑖𝐼𝑗−1−rank(𝑇−𝜆𝑖𝐼𝑗). In 

particular, the number of cycles is the geometric multiplicity of 𝜆𝑖 . 

The Jordan canonical form is determined by the eigenvalues and nullity( T − λiI 
r) for 

every eigenvalue 𝜆𝑖 . 
 
So now we know… 

Supposing 𝑝(𝑡) splits, let 𝜆1, … , 𝜆𝑘  be the distinct eigenvalues of T, and let 𝑝𝑖  be the order of 

the largest Jordan block corresponding to 𝜆𝑖 . The minimal polynomial of T is 

𝑝 𝑡 =   𝑡 − 𝜆𝑖 
𝑝𝑖

𝑘

𝑖=1

 

T is diagonalizable iff all exponents are 1. 
 

8-3 Rational Canonical Form 
 
Let T be a linear operator on finite-dimensional V with characteristic polynomial 

𝑓 𝑡 =  −1 𝑛   𝑝𝑖 𝑡  
𝑛𝑖

𝑘

𝑖=1

 

where the factors 𝑝𝑖(𝑡) are distinct irreducible monic polynomials and 𝑛𝑖  are positive 
integers. Define 

𝐾𝑝 𝑖
= {𝑥 ∈ 𝑉|𝑝𝑖 𝑇 𝑘 𝑥 = 0 for some positive integer 𝑘}  

Note this is a generalization of the generalized eigenspace. 
 

The companion matrix of the monic polynomial 𝑝 𝑡 = 𝑎0 + 𝑎1𝑡 + ⋯ + 𝑎𝑘−1𝑡
𝑘−1 + 𝑡𝑘  is 

𝐶(𝑝) =

 
 
 
 
 
0 0
1 0
0 1

⋯ 0 −𝑎0

⋯ 0 −𝑎1

⋯ 0 −𝑎2

⋮ ⋮
0 0

⋱ ⋮ ⋮
⋯ 1 −𝑎𝑘−1 

 
 
 
 

 because the characteristic polynomial of c(p) is  −1 𝑘𝑝(𝑡). 

 
Every linear operator T on finite-dimensional V has a rational canonical form (Frobenius 
normal form) even if the characteristic polynomial does not split. 

 𝑇 𝛽 =  

𝐶1 𝑂
𝑂 𝐶2

⋯ 𝑂
⋯ 𝑂

⋮ ⋮
𝑂 𝑂

⋮
⋯ 𝐶𝑟

  

where each 𝐶𝑖  is the companion matrix of an invariant factor 𝑝𝑖 . 
 
Uniqueness and Structure: 

The rational canonical form is unique under the condition 𝑝𝑖+1|𝑝𝑖 for each 1 ≤ 𝑖 < 𝑟. 
The rational canonical form is determined by the prime factorization of f(t) and 

nullity(pi(T)r) for every positive integer r. 
 



Generalized Cayley-Hamilton Theorem: 
Suppose the characteristic polynomial of T is  

𝑓 𝑡 =  𝑝𝑖
𝑟𝑖

𝑘

𝑖=1

 

where 𝑝𝑖  are distinct irreducible monic polynomials and 𝑟𝑖  are positive integers. Then the 
minimal polynomial of T is 

𝑝 𝑡 =  𝑝𝑖
𝑑𝑖

𝑘

𝑖=1

 

where 𝑑𝑖 =
nullity  𝑝𝑖 𝑇 𝑟𝑖 

deg  𝑝𝑖 
. 

 

8-4 Calculation of Invariant Factors 
 
For a matrix over the polynomials F[x], elementary row/ column operations include: 

(1) Interchanging 2 rows/ columns 
(2) Multiplying any row/ column by a nonzero scalar 
(3) Adding any polynomial multiple of a row/ column to another row/ column 

However, note arbitrary division by polynomials is illegal in F[x]. 
 
For such a (mxn) polynomial F[x], the following are equivalent: 

1. P is invertible. 
2. The determinant of P is a nonzero scalar. 
3. P is row-equivalent to the mxm identity matrix. 
4. P is a product of elementary matrices. 

 

A 𝑚 × 𝑛 matrix is in Smith normal form if 
1. Every entry not on the diagonal is 0. 

2. On the main diagonal of N, there appear polynomials 𝑓1, … 𝑓𝑙  such that 𝑓𝑘 |𝑓𝑘+1, 1 ≤
𝑘 < min⁡(𝑚, 𝑛). 

 

Every matrix is equivalent to a unique matrix N in normal form. For a 𝑚 × 𝑛 matrix A, follow 
this algorithm to find it: 

1. Make the first column  

𝑝
0
⋮
0

 . 

a. Choose the nonzero entry 𝑓 in the first column that has the least degree. 

b. For each other nonzero entry 𝑝, use polynomial division to write 𝑝 = 𝑓𝑞 + 𝑟, 
where 𝑟 is the remainder upon division. Subtract 𝑞 times the row with 𝑓 from 
the row with 𝑝. 

c. Repeat a and b until there is (at most) one nonzero entry. Switch the first row 
with that row if necessary. 

2. Put the first row in the form  𝑝 0 ⋯ 0  by following the steps above but 
exchanging the words ―rows‖ and ―columns‖. 

3. Repeat 1 and 2 until the first entry 𝑔 is the only nonzero entry in its row and column. 
(This process terminates because the least degree decreases at each step.) 

4. If 𝑔 does not divide every entry of A, find the first column with an entry not divisible 
by g and add it to column 1, and repeat 1-4; the degree of ―g‖ will decrease. Else, go 
to the next step. 

5. Repeat 1-4 with the  𝑚 − 1 × (𝑛 − 1) matrix obtained by removing the first row and 



column. 
 
Uniqueness: 

Let 𝛿𝑘 𝑀  be the gcd of the determinants of all 𝑘 × 𝑘 submatrices of M (𝛿0 𝑀 = 1). 
Equivalent matrices have all these values equal. The polynomials in the normal form are 

𝑓𝑘 =
𝛿𝑘 (𝑀)

𝛿𝑘−1(𝑀)
. 

 

Let A be a 𝑛 × 𝑛 matrix, and 𝑝1, … , 𝑝𝑟  be its invariant factors. The matrix 𝑥𝐼 − 𝐴 is equivalent 
to the 𝑛 × 𝑛 diagonal matrix with diagonal entries 1, … ,1, 𝑝1, … , 𝑝𝑟 . Use the above algorithm. 
 

 Summary 

 
8-5 Semi-Simple and Nilpotent Operators 

 

A linear operator N is nilpotent if there is a positive integer r such that 𝑁𝑟 = 𝑇0. 
The characteristic and minimal polynomials are in the form 𝑥𝑛 . 
 
A linear operator is semi-simple if every T-invariant subspace has a complementary T-
invariant subspace. 

Diagonalization
-Diagonal form has only entries on 

diagonal
-Condition: All eigenvalues have 
same algebraic and geometric 

multiplicity- n linearly independent 
eigenvalues

-Determined by eigenvalues
-V is the direct sum of eigenspaces 

Eλ.
-All irreducible factors in minimal 

polynomial have exponent 1.
-T=λ1P1+...+λkPk, where Pi are 
projections onto eigenspaces.

-I=P1+...+Pk

Rational Canonical Form
-Companion matrices on 

diagonal, each polynomial 
(invariant factor) is multiple of 

the next.
-No condition

-Determined by prime 
factorization and nullity(p(T)r)

-Exponent of irreducible 
factor in minimal polynomial 

is nullity(f(T)a)/deg(f)
-Cyclic decomposition 

theorem

Jordan Canonical Form
-Jordan blocks on diagonal
-Characteristic polynomial 

splits
-Determined by eigenvalues 

and nullity [(T-λI)r]
-V is the direct sum of 

generalized eigenspaces Kλ.
-Exponent of linear term in 
minimal polynomial is order 

of largest Jordan block.
-Primary decomposition 

theorem



A linear operator (on finite-dimensional V over F) is semi-simple iff the minimal polynomial 
has no repeated irreducible factors. If F is algebraically closed, T is semi-simple iff T is 
diagonalizable. 
 
Let F be a subfield of the complex numbers. Every linear operator T can be uniquely 
decomposed into a semi-simple operator S and a nilpotent operator N such that 

1. 𝑇 = 𝑆 + 𝑁 
2. 𝑆𝑁 = 𝑁𝑆 

N and S are both polynomials in T. 
 
Every linear operator whose minimal (or characteristic) polynomial splits can be uniquely 
decomposed into a diagonalizable operator D and a nilpotent operator N such that 

1. 𝑇 = 𝐷 + 𝑁 
2. 𝐷𝑁 = 𝑁𝐷 

N and D are both polynomials in T. If 𝐸𝑖  are the projections in the Primary Decomposition 

Theorem (Section 8.1) then 𝐷 =  𝜆𝑖𝐸𝑖
𝑘
𝑖=1 , 𝑁 =  (𝑇 − 𝜆𝑖𝐼)𝐸𝑖

𝑘
𝑖=1 . 

 
  



9 Applications of Diagonalization, Sequences 
 

9-1 Powers and Exponentiation 
 
Diagonalization helps compute matrix powers: 

𝐴𝑘 =  𝑆Λ𝑆−1 𝑘 = 𝑆Λ𝑘𝑆−1 

To find 𝐴𝑘𝑥, write x as a combination of the eigenvectors (Note S is a change of base 

formula that finds the coordinates  𝑐1, … , 𝑐𝑛 ) 

𝑥 =  𝑐𝑖𝑥𝑖

𝑛

𝑖=1

 

Then 

𝐴𝑘𝑥 =  𝑐𝑖𝜆𝑖
𝑘𝑥𝑖

𝑛

𝑖=1

 

 
If diagonalization is not possible, use the Jordan form: 

𝐴𝑘 =  𝑆J𝑆−1 𝑘 = 𝑆J𝑘𝑆−1 

Use the following to take powers of a 𝑚 × 𝑚 Jordan block 𝐽 =

 
 
 
 
 
𝜆 1
0 𝜆

⋯ 0 0
⋯ 0 0

⋮ ⋮
0 0
0 0

⋱ ⋮ ⋮
⋯ 𝜆 1
⋯ 0 𝜆 

 
 
 
 

: 

𝐽𝑟 =

 
 
 
 
 
 
 
 𝜆𝑟  

𝑟

1
 𝜆𝑟−1

0 𝜆𝑟

⋯  
𝑟

𝑚 − 2
 𝜆𝑟−(𝑚−2)  

𝑟

𝑚 − 1
 𝜆𝑟−(𝑚−1)

⋯  
𝑟

𝑚 − 2
 𝜆𝑟−(𝑚−2)

⋮ ⋮
0 0
0 0

⋱ ⋮ ⋮

⋯ 𝜆𝑟  
𝑟

1
 𝜆𝑟−1

⋯ 0 𝜆𝑟  
 
 
 
 
 
 
 

 

For a matrix in Jordan canonical form, use this formula for each block. 
 
The spectral radius is the largest absolute value of the eigenvalues. If it is less than 1, the 
matrix powers converge to 0, and it determines the rate of convergence. 
 

The matrix exponential is defined as (𝐴0 = 𝐼) 

𝑒𝐴𝑡 =  
 𝐴𝑡 𝑛

𝑛!

∞

𝑖=0

 

 

𝑒𝐴𝑡 = 𝑆𝑒Λ𝑡𝑆−1 = 𝑆  
𝑒𝜆1𝑡

⋱
𝑒𝜆𝑛 𝑡

  

Thus the eigenvalues of 𝑒𝐴𝑡  are 𝑒𝜆𝑡 . 

In general, 𝑒𝐴𝑡 = 𝑎𝑛−1𝐴
𝑛−1𝑡𝑛−1 + ⋯ + 𝑎0𝐼 for some constants 𝑎𝑛−1, … , 𝑎0. Letting 𝑟 𝑥 =

𝑎𝑛−1𝑥
𝑛−1 + ⋯ + 𝑎0, we have 𝑒𝜆 =

𝑑 𝑖

𝑑𝜆𝑖
𝑟(𝜆) for 0 ≤ 𝑖 < 𝜇𝑎𝑙𝑔 (𝜆) for every eigenvalue λ. Use the 

system of n equations to solve for the coefficients. 

When A is skew-symmetric, 𝑒𝐴𝑡  is orthogonal. 
 

9-2 Markov Matrices 



 
Let 𝑢𝑘  be a column vector where the ith entry represents the probability that at the kth step 
the system is at state i. Let A be the transition matrix, that is, 𝐴𝑖𝑗  contains the probability 

that a system in state j at any given time will be at state i the next step. Then 

𝑢𝑘 = 𝐴𝑘𝑢0  

where 𝑢0 contains the initial probabilities or proportions. 
 
The Markov matrix A satisfies: 

1. Every entry is nonnegative. 
2. Every column adds to 1. 

A contains an eigenvalue of 1, and all other distinct eigenvalues have smaller absolute 
value. 
If all entries of A are positive, then the eigenvalue 1 has only multiplicity 1. The eigenvector 

corresponding to 1 is the steady state- approached by the probability vectors 𝑢𝑘  and 
describing the probability that a long time late the system will be at each state. 
 

9-3 Recursive Sequences 
 
System of linear recursions: 
To find the solution to the recurrence with n variables 

 

𝑥1,𝑘+1 = 𝑎11𝑥1,𝑘 + ⋯ +𝑎𝑛1𝑥𝑛,𝑘

⋮
𝑥𝑛,𝑘+1 = 𝑎𝑚1𝑥1,𝑘 + ⋯ 𝑎𝑚𝑛 𝑥𝑛.𝑘

  

let 𝑥𝑘 =  

𝑥1,𝑘

⋮
𝑥𝑛,𝑘  

  and use 𝑥𝑘 = 𝐴𝑘𝑥0. 

 
Pell’s Equation: 

If D is a positive integer that is not a perfect square, then all positive solutions to 𝑥2 − 𝐷𝑦2 =
1 are in the form (𝑥, 𝑦) with 

𝐴𝑘 =  
𝑥 𝐷𝑦
𝑦 𝑥

  

where 𝐴 =  
𝑥1 𝐷𝑦1

𝑦1 𝑥1
  and (𝑥1, 𝑦1) is the fundamental solution, that is, the solution where 

𝑥1 > 1 is minimal. 
 
Homographic recurrence: 

A homographic function is in the form 𝑓: ℂ\{−
𝑑

𝑐
} → 𝐶 defined by 𝑓(𝑧) =

𝑎𝑧+𝑏

𝑐𝑧+𝑑
, 𝑐 ≠ 0. 𝐴𝑓 =

 
𝑎 𝑏
𝑐 𝑑

  is the corresponding matrix. Define the sequence  𝑥𝑛 𝑛≥0 by 𝑥𝑛+1 = 𝑓 𝑥𝑛 , 𝑛 ≥ 0. 

Then 𝑥𝑛 =
𝑎𝑛𝑥0+𝑏𝑛

𝑐𝑛𝑥0+𝑑𝑛
 where  𝐴𝑓 

𝑛
=  

𝑎𝑛 𝑏𝑛

𝑐𝑛 𝑑𝑛
 . 

 
Linear recursions: 
A sequence of complex numbers satisfies a linear recursion of order k if 

𝑥𝑛 + 𝑎1𝑥𝑛−1 + ⋯ + 𝑎𝑘𝑥𝑛−𝑘 = 0, 𝑛 ≥ 𝑘 

Solve the characteristic equation 𝑡𝑘 + 𝑎1𝑡
𝑘−1 + ⋯ + 𝑎𝑘 = 0. If the roots are 𝑡1, … , 𝑡𝑕  with 

multiplicities 𝑠1, … 𝑠𝑕 , then 𝑥𝑛 = 𝑓1 𝑛 𝑡1
𝑛 + ⋯ + 𝑓𝑕 𝑛 𝑡𝑕

𝑛   where 𝑓𝑖  is a polynomial of degree at 

most 𝑠𝑖 . Determine the polynomials from solving a system involving the first k terms of the 
sequence. (Note the general solution is a k-dimensional subset of ℂ∞ .) 

 



10 Linear Forms 
 

10-1 Multilinear Forms 
 
A function L from 𝑉𝑛 = 𝑉 × ⋯ × 𝑉       

𝑛

, where V is a module over R, to R is 

1. Multilinear (n-linear) if it is linear in each component separately: 

𝐿 𝑥1, … , 𝑐𝑥𝑖 + 𝑦𝑖 , … , 𝑥𝑛 = 𝑐𝐿 𝑥1, … , 𝑥𝑖 , … , 𝑥𝑛 + 𝐿 𝑥1, … , 𝑦𝑖 , … , 𝑥𝑛  
2. Alternating if 𝐿 𝑥1, … , 𝑥𝑛 = 0 whenever 𝑥𝑖 = 𝑥𝑗  with 𝑖 ≠ 𝑗. 

 
The collection of all multilinear functions on 𝑉𝑛  is denoted by 𝑀𝑛(𝑉), and the collection of all 
alternating  multilinear functions is Λ𝑛(𝑉). 
 

If L and M are multilinear functions on 𝑉𝑟 , 𝑉𝑠, respectively, the tensor product of L and M 

is the function on 𝑉𝑟+𝑠 defined by 
 𝐿 ⊗ 𝑀  𝑥, 𝑦 = 𝐿 𝑥 𝑀(𝑦) 

where 𝑥 ∈ 𝑉𝑟 , 𝑦 ∈ 𝑉𝑠. The tensor product is linear in each component and is associative. 
 

For a permutation σ define 𝐿𝜎 𝑥1, … , 𝑥𝑟 = 𝐿(𝑥𝜎 1 , … , 𝑥𝜎 𝑛 ) and the linear transformation 

𝜋𝑟 : 𝑀𝑟 𝑉 → Λ𝑟(𝑉) by 

𝜋𝑟𝐿 =  (sgn(𝜎)

𝜎

𝐿𝜎) 

 
If V is a free module of rank n, 𝑀𝑟(𝑉) is a free R-module of rank 𝑛𝑟 , with basis 𝑓𝑗1

⊗ ⋯⊗

𝑓𝑗𝑟  (1 ≤ 𝑗1, … , 𝑗𝑟 ≤ 𝑛) where {𝑓1, … , 𝑓𝑛} is a basis for 𝑉∗. 

When 𝑉 = 𝑅𝑛 , and L is a r-linear form in 𝑀𝑟(𝑉), 

𝐿 𝑥1, … , 𝑥𝑟 =  𝐴 1, 𝑗1 ⋯ 𝐴 𝑟, 𝑗𝑟 𝐿(𝑒𝑗1
, … , 𝑒𝑗𝑟 )

1≤𝑗1 ,…𝑗𝑟≤𝑛

 

where A is the rxn matrix with rows 𝑥1, … , 𝑥𝑟 . 

Λ𝑟(𝑉) is a free R-module of rank  𝑛
𝑟
 , with basis the same as before, but 𝑗1, … , 𝑗𝑟  are 

combinations of {1, … , 𝑛} (1 ≤ 𝑗1 < ⋯ < 𝑗𝑟 ≤ 𝑛). 
 
Where the Determinant fits in: 

1. 𝐷 =  (sgn(𝜎)𝜎 𝑓𝜎 1 ⊗ ⋯⊗ 𝑓𝜎 𝑛 ), the 𝑓𝑖  standard coordinate functions. 

2. If T is a linear operator on 𝑉 = 𝑅𝑛  and 𝐿 ∈ Λ𝑛(𝑉), 

𝐿 𝑇 𝑥1 , … , 𝑇 𝑥𝑛  = det 𝑇 𝐿(𝑥1, … , 𝑥𝑛) 

The determinant of T is the same as the determinant of any matrix representation of 
T. 

3. The special alternating form 𝐷𝐽 = 𝜋𝑟(𝑓𝑗1
⊗ ⋯⊗ 𝑓𝑗𝑟 ) (𝐽 = {𝑗1, … , 𝑗𝑟}) is the determinant 

of the rxr matrix A defined by 𝐴𝑖𝑘 = 𝑓𝑗𝑘
 𝑥𝑖 , also written as 

𝜕 𝑥1 ,…𝑥𝑟 

𝜕(𝑦𝑗1
,…,𝑦𝑗𝑟 )

, where 

{𝑓1, … , 𝑓𝑛} is the standard dual basis. 
 

10-2 Exterior Products 
 
Let G be the group of all permutations which permute {1, … , 𝑟} and {𝑟 + 1, … , 𝑠} within 

themselves. For alternating r and s-linear forms L and M, define 𝜓: 𝔖𝑟+𝑠 → 𝑀𝑟+𝑠(𝑉) by 

𝜓 𝜎 = (sgn 𝜎 ) 𝐿 ⊗ 𝑀 𝜎 . For a coset 𝑎𝐺, define 𝜓  𝑎𝐺 = 𝜓(𝑎). The exterior product of L 
and M is 



𝐿 ∧ 𝑀 =  𝜓  𝐻 

𝐻∈𝔖𝑟+𝑠/𝐺

 

Then 

1. 𝑟! 𝑠! 𝐿 ∧ 𝑀 = 𝜋𝑟+𝑠(𝐿 ⊗ 𝑀); in particular 𝐿 ∧ 𝑀 =
1

𝑟!𝑠!
𝜋𝑟+𝑠(𝐿 ⊗ 𝑀) if R is a field of 

characteristic 0. 
2. (𝐿 ∧ 𝑀) ∧ 𝑁 = 𝐿 ∧ (𝑀 ∧ 𝑁) 

3. 𝐿 ∧ 𝑀 =  −1 𝑟𝑠𝑀 ∧ 𝐿 
 
Laplace Expansions: 

Define 𝐿 𝑥1, … 𝑥𝑟 = det   
𝐴11 ⋯ 𝐴1𝑟

⋮ ⋱ ⋮
𝐴𝑟1 ⋯ 𝐴𝑟𝑟

   and 𝑀 𝑥1, … 𝑥𝑠 = det   

𝐴1,𝑟+1 ⋯ 𝐴1𝑛

⋮ ⋱ ⋮
𝐴𝑠,𝑟+1 ⋯ 𝐴𝑠𝑛

   where 

𝑥𝑖 =  𝐴𝑖1, … , 𝐴𝑖𝑛  ∈ 𝑅𝑛  and 𝑠 = 𝑛 − 𝑟. Then 𝐿 ∧ 𝑀 = det⁡(𝐴), giving 

det 𝐴 =   −1 𝑗1+⋯+𝑗𝑟+
𝑟 𝑟−1 

2 det   
𝐴 𝑗1, 1 ⋯ 𝐴 𝑗1, 𝑟 

⋮ ⋱ ⋮
𝐴 𝑗𝑟 , 1 ⋯ 𝐴 𝑗𝑟 , 𝑟 

  

𝑗1<⋯<𝑗𝑟 ,𝑘1<⋯<𝑘𝑠

 

det   
𝐴(𝑘1, 𝑟 + 1) ⋯ 𝐴 𝑘1, 𝑛 

⋮ ⋱ ⋮
𝐴(𝑘𝑠 , 𝑟 + 1) ⋯ 𝐴(𝑘𝑠 , 𝑛)

   

 

For a free R-module V of rank n, the Grassman ring over 𝑉∗ is defined by 

𝛬 𝑉 = 𝛬0 𝑉 ⊕ ⋯⊕ 𝛬𝑛 𝑉  
and has dimension 2𝑛 . (The direct sum is treated like a Cartesian product.) 
 

10-3 Bilinear Forms 
 

A function 𝐻: 𝑉 × 𝑉 → 𝐹 is a bilinear form on V if H is linear in each variable when the other 
is held fixed: 

1. 𝐻 𝑎𝑥1 + 𝑥2, 𝑦 = 𝑎𝐻 𝑥1, 𝑦 + 𝐻(𝑥2, 𝑦) 
2. 𝐻 𝑥, 𝑎𝑦1 + 𝑦2 = 𝑎𝐻 𝑥, 𝑦1 + 𝐻(𝑥, 𝑦2) 

The bilinear form is symmetric (a scalar product) if 𝐻 𝑥, 𝑦 = 𝐻(𝑦, 𝑥) for all 𝑥, 𝑦 ∈ 𝑉 and 
skew-symmetric if 𝐻 𝑥, 𝑦 = −𝐻(𝑦, 𝑥).  

The set of all bilinear forms on V, denoted by ℬ(𝑉), is a vector space. An real inner product 
space is a symmetric bilinear form. 
 

A function 𝐾: 𝑉 → 𝐹 is a quadratic form if there exists a symmetric bilinear form H such that 
𝐾 𝑥 ≡ 𝐻(𝑥, 𝑥). If F is not of characteristic 2, 

𝐻 𝑥, 𝑦 =
𝐾 𝑥 + 𝑦 − 𝐾 𝑥 − 𝐾(𝑦)

2
 

 
Let 𝛽 = {𝑣1, … , 𝑣𝑛} be an ordered basis for V. The matrix 𝐴 = 𝜓𝛽  𝐻  with 𝐴𝑖𝑗 = 𝐻(𝑣𝑖 , 𝑣𝑗 ) is 

the matrix representation of H with respect to 𝛽. 
1. 𝜓𝛽  is an isomorphism. 

2. Thus ℬ(𝑉) has dimension 𝑛2. 
3. If 𝛽∗ = {𝐿1, … , 𝐿𝑛} is a basis for 𝑉∗ then 𝑓𝑖𝑗  𝑥, 𝑦 = 𝐿𝑖 𝑥 𝐿𝑗 (𝑦) is a basis for ℬ(𝑉). 

4. 𝜓𝛽  is (skew-)symmetric iff H is. 

5. A is the unique matrix satisfying 𝐻 𝑥, 𝑦 ≡  𝑥 𝛽
𝑇𝐴 𝑦 𝛽 . 

 

Square matrix B is congruent to A if there exists an invertible matrix 𝑄 such that 𝐵 = 𝑄𝑇𝐴𝑄. 



Congruence is a equivalence relation. For 2 bases 𝛽, 𝛾, 𝜓𝛽  𝐻  and 𝜓𝛾 𝐻  are congruent; 

conversely, congruent matrices are 2 representations of the same bilinear form. 
 

Define 𝐿𝑥 𝑦 =  𝐿𝐻 𝑥   𝑦 = 𝐻(𝑥, 𝑦) and 𝑅𝑦 𝑥 =  𝑅𝐻 𝑦   𝑥 = 𝐻(𝑥, 𝑦).The rank of H is 

rank 𝐿𝐻 = rank 𝑅𝐻 . For n-dimensional V, the following are equivalent: 
1. rank(H)=n 

2. For 𝑥 ≠ 0, there exists y such that 𝐻 𝑥, 𝑦 ≠ 0. 
3. For 𝑦 ≠ 0, there exists y such that 𝐻 𝑥, 𝑦 ≠ 0. 

Any H satisfying 2 and 3 is nondegenerate. The radical of H, Rad(H), is the kernel of 𝐿𝐻 or 
𝑅𝐻, in other words, it is orthogonal to all other vectors. 
 

10-4 Theorems on Bilinear Forms and Diagonalization 
 
A bilinear form H on finite-dimensional V is diagonalizable if there is a basis β such that 
𝜓𝛽 (𝐻) is diagonal. 

If F does not have characteristic 2, then a bilinear form is symmetric iff it is diagonalizable. If 
V is a real inner product space, the basis can be chosen to be orthonormal. 

𝜓𝛽 𝐻 = 𝐴 = 𝑄𝑇𝐷𝑄 

where Q is the change-of-coordinate matrix changing standard 𝛽-coordinates into 𝛾-
coordinates and 𝜓𝛾 𝐻 = 𝐷. Diagonalize the same way as before, choosing Q to be 

orthonormal so 𝑄𝑇 = 𝑄−1. 
 

A vector v is isotropic if 𝐻 𝑣, 𝑣 = 0 (orthogonal to itself). A subspace W is isotropic if the 
restriction of H to W is 0. A subspace is maximally isotropic if it has greatest dimension 
among all isotropic subspaces. Orthogonality, projections, and adjoints for scalar products 
is defined the same way as orthogonality for inner products: v and w are orthogonal if 

𝐻 𝑣, 𝑤 = 0, and 𝑊⊥ = {𝑣|𝐻 𝑣, 𝑤 = 0 ∀ 𝑤 ∈ 𝑊}. 
1. If 𝑉 = Rad(𝐻)⨁𝑊 then the restriction of H to W, HW, is nondegenerate. 

2. If H is nondegenerate on V and subspace 𝑊 ⊆ 𝑉, 𝑊 ⊕ 𝑊⊥ = 𝑉. 
3. If H is nondegenerate, there exists an orthonormal basis for V. 

 
Sylvester’s Law of Inertia: 
Let H be a symmetric form on finite-dimensional real V. Then the number of positive 
diagonal entries (the index p of H) and negative diagonal entries in any diagonal 
representation of H is the same. The signature is the number of positive entries and the 
number of negative entries. The rank, index, and signature are all invariants of the bilinear 
form. 

1. Two real symmetric nxn matrices are congruent iff they have the same invariants. 
2. A symmetric nxn matrix is congruent to 

𝐽𝑝𝑟 =  

𝐼𝑝 𝒪 𝒪

𝒪 −𝐼𝑟−𝑝  𝒪

𝒪 𝒪 𝒪

  

3. For nondegenerate H: 

a. The maximal subspace W such that 𝐻𝑊 is positive/ negative definite is p/ n-p. 
b. The maximal isotropic subspace W has dimension min⁡{𝑝, 𝑛 − 𝑝} 

 

If 𝑓∗ is the adjoint of linear transformation f, and 𝑓∨ is the dual (transpose), then 𝑅𝐻𝑓∗ =
𝑓𝑉𝑅𝐻. 
 

Let H be a skew-symmetric form on n-dimensional V over a subfield of ℂ. Then r=rank(H) is 



even and there exists 𝛽 such that 𝜓𝛽  𝐻  is the direct sum of the  𝑛 − 𝑟 × (𝑛 − 𝑟) zero 

matrix and 
𝑟

2
 copies of  

0 1
−1 0

 . 

 

10-5 Sesqui-linear Forms 
 

A sesqui-linear form f on ℝ or ℂ is 

Linear in the first component 𝑓 𝑐𝑥 + 𝑦, 𝑧 = 𝑐𝑓 𝑥, 𝑧 + 𝑓(𝑦, 𝑧) 

Conjugate-linear in the second component 𝑓 𝑥, 𝑐𝑦 + 𝑧 = 𝑐 𝑓 𝑥, 𝑦 + 𝑓(𝑥, 𝑧) 

The form is Hermitian if 𝑓 𝑥, 𝑦 = 𝑓(𝑦, 𝑥)         . A sesqui-linear form f is Hermitian if 𝑓 𝑥, 𝑥  is real 
for all x. [Note: Some books reverse x and y for sesqui-linear forms and inner products.] 
 
The matrix representation A of f in basis {𝑣1, … , 𝑣𝑛} is given by 𝐴𝑖𝑗 = 𝑓(𝑥𝑗 , 𝑥𝑖). (Note the 

reversal.) Then 𝐻 𝑥, 𝑦 ≡  𝑦 𝛽
∗ 𝐴 𝑦 𝛽  𝑥 𝛽 . 

 
If V is a finite-dimensional inner product space, there exists a unique linear operator Tf on V 
such that 𝑓 𝑥, 𝑦 =  𝑇𝑓 𝑥 , 𝑦 . This map 𝑓 → 𝑇𝑓  is an isomorphism from the vector space of 

sesqui-linear forms onto ℒ(𝑉, 𝑉). 𝑓 is self-adjoint iff 𝑇𝑓  is self-adjoint. 

 

f on ℝ or ℂ is positive/ nonnegative if it is Hermitian and 𝑓 𝑥, 𝑥 > 0 for 𝑥 ≠ 0/ 𝑓 𝑥, 𝑥 ≥ 0. A 
positive form is simply an inner product. f is positive if its matrix representation is 
positive definite. 
 
Principal Axis Theorem: (from the Spectral Theorem) 
For every Hermitian form f on finite-dimensional V, there exists an orthonormal basis in 
which f has a real diagonal matrix representation. 
 

 Summary 



 
10-6 Application of Bilinear and Quadratic Forms: Conics, Quadrics and Extrema 

 
An equation in 2/ 3 variables of degree 2 determines a conic/ quadric. 

1. Group all the terms of degree 2 on one side, and represent them in the form 

 𝑥1 ⋯ 𝑥𝑛 𝐴  

𝑥1

⋮
𝑥𝑛

  where n=2/ 3 and A is a symmetric 𝑛 × 𝑛 matrix. If the coefficient 

of 𝑥𝑖
2 is 𝑐𝑖𝑖  then 𝐴𝑖𝑖 = 𝑐𝑖𝑖 . If the coefficient of 𝑥𝑖𝑥𝑗 , 𝑖 < 𝑗 is 𝑐𝑖𝑗  then 𝐴𝑖𝑗 = 𝐴𝑗𝑖 =

𝑐𝑖𝑗

2
. 

Diagonalize 𝐴 = 𝑄𝑇𝐷𝑄 and write the terms as   𝑥1 ⋯ 𝑥𝑛 𝑄𝑇 𝐷  𝑄  

𝑥1

⋮
𝑥𝑛

  . The axes 

the conic/ quadric are oriented along are given by the eigenvectors. 
2. Write the linear terms with respect to the new coordinates, and complete the square 

in each variable. 
 

Name of Quadric Equation 

Ellipsoid 𝑎11𝑥1
2 + 𝑎22𝑥

2 + 𝑎33𝑥3
2 = 1 

1-sheeted hyperboloid 𝑎11𝑥1
2 + 𝑎22𝑥

2 − 𝑎33𝑥
2 = 1 

2-sheeted hyperboloid 𝑎11𝑥1
2 − 𝑎22𝑥

2 − 𝑎33𝑥
2 = 1 

Elliptic paraboloid 𝑎11𝑥1
2 + 𝑎22𝑥

2 = 𝑥3 

Linear Transfromation L

-V→W

- Matrix representation Aij=fi(T(vj))

-Evaluation: [T(v)]β=[T]β[v]β

- Change of basis: [T]γ =Q-1[T]βQ, 
Q changes γ to β-coordinates

- Representations in different 
bases are similar/ equivalent

Sesqui-linear/ Hermitian 
Form f

-VxV→C

-Matrix representation 
Aij=f(vj,vi)

-Evaluation: [y]β*A[x]β

- Change of basis 
ψγ(H)=P*ψβ(H)P

Bilinear Form H

-VxV→F

- Matrix representation 
Aij=H(vi,vj)

-Evaluation: [x]β
TA[y]β

- Change of basis 
ψγ(H)=QTψβ(H)Q

- Representations in 
different bases are 

congruent.

-Diagonalizable iff 
symmetric.



Hyperbolic paraboloid 𝑎11𝑥1
2 + 𝑎22𝑥

2 = 𝑥3 

Elliptic cone 𝑎11𝑥1
2 + 𝑎22𝑥

2 − 𝑎33𝑥3
2 = 0 

 
 
The Hessian matrix 𝐴(𝑝) of 𝑓(𝑝) is defined by 

𝐴𝑖𝑗 =
𝜕2𝑓(𝑝)

 𝜕𝑡𝑖 (𝜕𝑡𝑗 )
 

 
Second Derivative Test: 
Let 𝑓(𝑡1, … , 𝑡𝑛) be a real-valued function for which all third-order partial derivatives exist and 

are continuous. Let 𝑝 = (𝑝1, … , 𝑝𝑛) be a critical point (i.e. 
𝜕𝑓

𝜕𝑡𝑖
= 0 for all i). 

(a) If all eigenvalues of 𝐴(𝑝) are positive, f has a local minimum at p. 
(b) If all eigenvalues are negative, f has a local maximum at p. 
(c) If 𝐴(𝑝) has at least one positive and one negative eigenvalue, p is a saddle point. 
(d) If rank(𝐴(𝑝)) < 𝑛 (an eigenvalue is 0) and 𝐴(𝑝) does not have both positive and 

negative eigenvalues, the test fails. 
 

  



11 Numerical Linear Algebra 
 

11-1 Elimination and Factorization in Practice 
 
Partial pivoting- For the kth pivot, choose the largest number in row k or below in that 
column. Exchange that row with row k. Small pivots create large roundoff error because they 
must be multiplied by large numbers. 
 
A band matrix A with half-bandwidth w has 𝐴𝑖𝑗 = 0 when  𝑖 − 𝑗 > 𝑤. 

 

Operation counts (A is 𝑘 × 𝑘 and invertible) (Multiply-subtract counted as one operation) 

Process Count (≾) Reason 

Forward elimination 
(A→U), A=LU 
factorization 

1

3
𝑛3 

 𝑘2 − 𝑘. When there are k rows left, for all k-
1 rows below, multiply-subtract k times. 

Forward elimination on 
band matrix with half-
bandwidth w 

1

3
𝑤2 3𝑛 −

2𝑤≈𝑤2𝑛 when 
w small 

≈  𝑤2 − 𝑤. There are no more than w-1 
nonzeros below any pivot. 

Forward elimination, 
right side (b) 

1

2
𝑛2 

 𝑘. When there are k rows left, multiply-
subtract for all entries below the current one. 

Back-substitution 1

2
𝑛2 

 𝑘. For row k, divide by pivot and substitute 
into previous k-1 rows. 

Factorization into QR 
(Gram-Schmidt) 

2

3
𝑛3 

 2𝑘2. When there are k columns left, divide 
the 𝑘th vector by its norm, find the projection 

of all remaining columns onto it (≈ 𝑘2) then 

subtract (≈ 𝑘2).  

𝐴−1 (Gauss-Jordan 
elimination) 

𝑛3 1

3
𝑛3 for A=LU,  

1

2
 𝑛 − 𝑘 2 ≈

1

6
𝑛3 for right 

side- no work is required on the kth column on 

the right side until row k, 𝑛(
1

2
𝑛2) back 

substitution 

 
Note: For parallel computing, working with matrices (more concise) may be more efficient. 
 

11-2 Norms and Condition Numbers 
 
The norm of a matrix is the maximum magnification of a vector x by A: 

 𝐴 = max
𝑥≠0

 𝐴𝑥 

 𝑥 
 

For a symmetric matrix,  𝐴  is the absolute value of the eigenvalue with largest absolute 
value. 
 
Finding the norm: 

 𝐴 2 = max
𝑥≠0

 𝐴𝑥 2

 𝑥 2
= max

𝑥≠0

𝑥𝑇𝐴𝑇𝐴𝑥

𝑥𝑇𝑥
= Largest eigenvalue of 𝐴𝑇𝐴 

                                                                        𝐴 = Largest singular value of 𝐴 
 
The condition number of A is 

𝑐 = cond(𝐴) =  𝐴  𝐴−1  



When A is symmetric, 𝑐 =
 𝜆  max

 𝜆 min
. Anyway, 𝑐 =  

Largest eigenvalue of 𝐴𝑇𝐴

Smallest eigenvalue of 𝐴𝑇𝐴
. 

The condition number shows the sensitivity of a system 𝐴𝑥 = 𝑏 to error. Problem error is 

inaccuracy in 𝐴 or 𝑏 due to measurement/ roundoff. Let Δ𝑥 be the solution error and Δ𝐴, Δ𝑏 
be the problem errors. 

1. When the problem error is in b, 
1

𝑐

 Δ𝑏 

 𝑏 
≤

 Δ𝑥 

 𝑥 
≤ 𝑐

 Δ𝑏 

 𝑏 
 

2. When the problem error is in A, 
 Δ𝑥 

 𝑥 + Δ𝑥 
≤ 𝑐

 Δ𝐴 

 𝐴 
 

 

11-3 Iterative Methods 
 
For systems: 
General approach: 

1. Split A into S-T. 𝐴𝑥 = 𝑏 ⇒ 𝑆𝑥 = 𝑇𝑥 + 𝑏 

2. Compute the sequence 𝑆𝑥𝑘+1 = 𝑇𝑥𝑘 + 𝑏 
Requirements: 

1. (2) should be easy to solve for 𝑥𝑘+1, so the preconditioner S should be diagonal or 
triangular. 

2. The error should converge to 0 quickly: 

𝑒𝑘+1 = 𝑆−1𝑇𝑒𝑘 , 𝑒𝑘 = 𝑥 − 𝑥𝑘  

Thus the largest eigenvalue of 𝑆−1𝑇 should have absolute value less than 1. 
 
Useful for large sparse matrices, with a wide band. 
 

Method S Remarks 

Jacobi’s method Diagonal part of A  

Gauss-Siedel method Lower triangular part of A About twice as fast: Often 

|𝜆|max is the square of the 

|𝜆|max for Jacobi. 

Successive overrelaxation S has diagonal of original A, 
but below, entries are those of 

𝜔𝐴. 

Combination of Jacobi and 

Gauss-Siedel. Choose ω to 
minimize spectral radius. 

Incomplete LU method Approximate L times 
approximate U 

Set small nonzero in L, U to 
0. 

 
Conjugate Gradients for positive definite A: 

Set 𝑥0 = 0  or approximate solution , 𝑟0 = 𝑏, 𝑝0 = 𝑟0. 

 Formula Description 

1. 
𝛼𝑛 =

𝑟𝑛−1
𝑇 𝑟𝑛−1

𝑝𝑛−1
𝑇 𝐴𝑝𝑛−1

 
Step length 𝑥𝑛−1 to 𝑥𝑛  
 

2. 𝑥𝑛 = 𝑥𝑛−1 + 𝛼𝑛𝑝𝑛−1 Approximate solution 
 

3. 𝑟𝑛 = 𝑟𝑛−1 − 𝛼𝑛𝐴𝑝𝑛−1 New residual 𝑏 − 𝐴𝑥𝑛  
 

4. 
𝛽𝑛 =

𝑟𝑛
𝑇𝑟𝑛

𝑟𝑛−1
𝑇 𝑟𝑛−1

 
Improvement 

5. 𝑝𝑛 = 𝑟𝑛 + 𝛽𝑛𝑝𝑛−1 Next search direction 



 
Computing eigenvalues 

1. (Inverse) power methods: Keep multiplying a vector u by A. Typically, u approaches 
the direction of the eigenvector corresponding to the largest eigenvalue. Convergence 

is quicker when  
𝜆2

𝜆1
  is small, where 𝜆1, 𝜆2 are eigenvalues with largest, second largest 

absolute values. For the smallest eigenvalue, apply the method with 𝐴−1 (but solve 
𝐴𝑢𝑘+1 = 𝑢𝑘  rather than compute the inverse). 

2. QR Method: Factor 𝐴 = 𝑄𝑅, reverse R and Q (eigenvalues don’t change), multiply 

them to get 𝐴′, and repeat. Diagonal entries approach the eigenvalues. When the last 
diagonal entry is accurate, remove the last row and column and continue. 
Modifications: 

a. Factor 𝐴𝑘 − 𝑐𝑘𝐼 into 𝑄𝑘𝑅𝑘 . 𝐴𝑘+1 = 𝑅𝑘𝑄𝑘 + 𝑐𝑘𝐼. Choose c near an unknown 
eigenvalue. 

b. (Hessenberg) Obtain off-diagonal entries first by changing A to a similar matrix. 
Zeros in lower-left corner stay. 

 
  



12 Applications 
 

12-1 Fourier Series (Analysis) 
 

Use the orthonormal system 
1

 2𝜋
,

cos 𝑥

 𝜋
,

sin 𝑥

 𝜋
,

cos 2𝑥

 𝜋
, ⋯ to express a function in  0,2𝜋  as a Fourier 

series: 

𝑓 𝑥 = 𝑎0 + 𝑎1 cos 𝑥 + 𝑏1 sin 𝑥 + 𝑎2 cos 2𝑥 + 𝑏2 sin 2𝑥 + ⋯ 
Use projections (Section 5.3) to find the coefficients. (Multiply by the function you’re trying to 

find the coefficient for, and integrate from 0 to 2𝜋; orthogonality makes all but one term 0.) 
The orthonormal system is closed, meaning that f is actually equal to the Fourier series. 
Fourier coefficients offer a way to show the isomorphism between Hilbert spaces (complete, 
separable, infinite-dimensional Euclidean spaces). See Analysis notes for details and 
derivation, Differential Equations for formulas. 
 

The exponential Fourier series uses the orthonormal system 𝑓𝑛 𝑡 = 𝑒𝑖𝑛𝑡 , 𝑛 ∈ ℤ instead. This 
applies to functions in [−∞, ∞]. 

 
12-2 Fast Fourier Transform 

 

Let 𝜔 = 𝑒
2𝜋𝑖

𝑛 . The Fast Fourier Transform takes as input the coefficients 𝑐𝑗  of 𝜔𝑗 , 0 ≤ 𝑗 < 𝑛 and 

outputs the value of the function 𝑓 𝑥 =  𝑐𝑗𝜔
𝑗𝑛−1

𝑗=0  at 𝑘, 0 ≤ 𝑘 < 𝑛. The matrix for F satisfies 

𝐹𝑗𝑘 = 𝜔𝑗𝑘  when the rows and columns are indexed from 0. Then 

𝐹𝑛𝑐 = 𝑦, 𝑐 =  

𝑐0

⋮
𝑐𝑛−1

 , 𝑦 =  

𝑦0

⋮
𝑦𝑛−1

 =  
𝑓(0)

⋮
𝑓(𝑛 − 1)

  

 

The inverse of F is 
1

𝑛
𝐹∗ =

1

𝑛
𝐹 . The inverse Fourier transform gives the coefficients from the 

functional values. To calculate a Fourier transform quickly when 𝑛 = 2𝑙 , break 

𝐹𝑛 =  
𝐼𝑛

2
𝐷𝑛

2

𝐼𝑛
2

−𝐷𝑛
2

  
𝐹𝑛

2

𝐹𝑛
2

  even-odd permutation  

Dn/2 is the diagonal matrix with (n/2)th roots of unity. The last matrix has n/2 columns with 1’s 
in even locations (in increasing order starting from 0) and the next n/2 rows in odd locations. 
Then break up the middle matrix using the same idea, but now there’s two copies. Repeating 

to 𝐹2, the operation count is 
1

2
𝑛𝑙 =

1

2
𝑛 ln⁡(𝑛). The net effect of the permutation matrices is that 

the numbers are ordered based on the number formed from their digits reversed. 
 



 
http://cnx.org/content/m12107/latest/ 

 

Set 𝑚 =
1

2
𝑛. The first and last m components of 𝑦 = 𝐹𝑛𝑐 are combinations of the half-size 

transforms 𝑦′ = 𝐹𝑚𝑐′ and 𝑦′′ = 𝐹𝑚𝑐′′, i.e. for 0 ≤ 𝑗 < 𝑚, 

 
𝑦𝑗 = 𝑦𝑗

′ + 𝜔𝑛
𝑗
𝑦𝑗 ′′

𝑦𝑗 +𝑚 = 𝑦𝑗
′ − 𝜔𝑛

𝑗
𝑦𝑗 ′′

  

 

12-3 Differential Equations 
 
The set of solutions to a homogeneous linear differential equation with constant coefficients 

 𝑎𝑖𝑦
 𝑖 

𝑛

𝑖=0

= 0 

is a n-dimensional subspace of 𝐶∞ . The functions 𝑡𝑗 𝑒𝜆𝑡  (𝜆 a root of the auxiliary polynomial 
 𝑎𝑖𝑥

𝑖𝑛
𝑖=0 = 0, 0 ≤ 𝑗 < 𝑚, where m is the multiplicity of the root) are linearly independent and 

satisfy the equation. Hence they form a basis for a solution space. 
 

The general solution to the system of n linear differential equations 𝑥′ = 𝐴𝑥 is any sum of 
solutions of the form 

𝑒𝜆𝑡  𝑓 𝑡  𝐴 − 𝜆𝐼 𝑝−1 + 𝑓 ′ 𝑡  𝐴 − 𝜆𝐼 𝑝−2 + ⋯ + 𝑓 𝑝−1  𝑡  𝑥 

where the x are the end vectors of distinct cycles that make up a Jordan canonical basis for A, 
𝜆 is the eigenvalue corresponding to x, p is the order of the Jordan block, and 𝑓(𝑡) is a 
polynomial of degree less than p. 
 

12-4 Combinatorics and Graph Theory 
 
Graphs and applications to electric circuits 
The incidence matrix A of a directed graph has a row for every edge and a column for every 
node. If edge i points away from/ toward node j, then 𝐴𝑖𝑗 = −1/ 1, respectively. Suppose the 

graph is connected, and has n nodes and m edges. Each node is labeled with a number 
(voltage), and multiplying by A gives the vector of edge labels showing the difference between 

http://cnx.org/content/m12107/latest/


the nodes they connect (potential differences/ flow). 
1. The row space has dimension n-1. Take any n-1 rows corresponding to a spanning 

tree of the graph to get a basis for the row space. Rows are dependent when edges 
form a loop. 

2. The column space has dimension n-1. The vectors in the column space are exactly the 
labeling of edges such that the numbers add to zero around every loop (when moving 
in the reverse direction as the edges, multiply by -1). This corresponds to all attainable 
sets of potential differences (Voltage law). 

3. The nullspace has dimension 1 and contains multiples of (1,…,1)T. Potential 
differences are 0. 

4. The left nullspace has dimension m-n+1. There are m-n+1 independent loops in the 
graph. The vectors in the left nullspace are those where the flow in equals the flow out 
at each node (Current law). To find a basis, find m-n+1 independent loops; for each 
loop choose a direction, and label the edge 1 if it goes around the loop in that direction 
and -1 otherwise. 

Let C be the diagonal matrix assigning a conductance (inverse of resistance) to each edge. 

Ohm’s law says 𝑦 = −𝐶𝐴𝑥. The voltages at the nodes satisfy 

𝐴𝑇𝐶𝐴𝑥 = 𝑓 
where f tells the source from outside (ex. battery). 
 
Another useful incidence matrix is where A has a row and column for each vertex, and 𝐴𝑖𝑗 = 1 

if vertices i and j are connected by an edge, and 0 otherwise. (For directed graphs, use -1/ 1.) 

 
Sets 
The incident matrix A for a family of subsets {𝑆1, … , 𝑆𝑛} containing elements {𝑥1, … , 𝑥𝑚 } has 

𝐴𝑖𝑗 =  
1 if 𝑥𝑖 ∈ 𝑆𝑗

0 if 𝑥𝑖 ∉ 𝑆𝑗

 . Exploring 𝐴𝐴𝑇 and using properties of ranks, determinants, linear 

dependency, etc. may give conclusions about the sets. Working in the field ℤ2 on problems 
dealing with parity may help. 
 

12-5 Engineering 
 
Discrete case: Springs 

𝐾 = 𝐴𝑇𝐶𝐴, 𝐾𝑢 = 𝑓 

Vector/ Equation Description Matrix 

𝑢 Movements of the n masses  

𝑒 = 𝐴𝑢 Kinematic equation: Elongations 
of the m springs 

A gives the elongations of the 
springs. 

𝑦 = 𝐶𝑒 Constitutive law: Tensions 
(internal forces) in the m springs 

C is a diagonal matrix that 
applies Hooke’s Law for each 
spring, giving the forces. 

𝑓 = 𝐴𝑇𝑦 Static/ balance equation: External 
forces on n masses 

Internal forces balance 
external forces on masses. 

 
There are four possibilities for A: 

Case Description Matrix A Equations 

Fixed-
fixed 

There are n+1 springs; each mass has 
2 springs coming out of it and the top 
and bottom are fixed in place. 

 

1
−1 ⋱

1
−1

  

𝑒1 = 𝑢1 
𝑒2 = 𝑢2 − 𝑢1 
⋮  
𝑒𝑛+1 = 𝑢𝑛  



Fixed-
free 

There are n springs; one end is fixed 
and the other is not. (Here we assume 
the top end is fixed.) 

 

1
−1 ⋱

1
−1 1

  

𝑒1 = 𝑢1 
𝑒2 = 𝑢2 − 𝑢1 
⋮  
𝑒𝑛 = 𝑢𝑛 − 𝑢𝑛−1 

Free-
free 

No springs at either end. n-1 springs. 
 
−1 1

⋱ ⋱
−1 1

  
𝑒1 = 𝑢2 − 𝑢1 

⋮  
𝑒𝑛−1 = 𝑢𝑛 − 𝑢𝑛−1 

Circular The nth spring is connected to the first 
one. n springs.  

1
−1 ⋱

−1

1
−1 1

  

𝑒1 = 𝑢1 − 𝑢𝑛  
𝑒2 = 𝑢2 − 𝑢1 
⋮  
𝑒𝑛 = 𝑢𝑛 − 𝑢𝑛−1 

Each spring is stretched or compressed by the difference in displacements. 
 
Facts about K: 

1. K is tridiagonal except for the circular case: only nonzero entries are on diagonal or one 
entry above or below. 

2. K is symmetric. 
3. K is positive definite for the fixed-fixed and fixed-free case. 

4. 𝐾−1 has all positive entries for the fixed-fixed and fixed-free case. 

𝑢 = 𝐾−1𝑓 in the fixed-fixed and fixed-free case give the movements from the forces. 
 
For the singular case: 

1. The nullspace of K is  
1
⋮
1
 , if the whole system moves by the same amount the forces 

stay the same. 

2. To solve 𝐾𝑢 = 𝑓, the forces must add up to 0 (equilibrium). 
 
Continuous case: Elastic bar 

𝐴𝑇𝐶𝐴𝑢 = 𝑓 becomes the differential equation 

−
𝑑

𝑑𝑥
 𝑐 𝑥 

𝑑𝑢

𝑑𝑥
 = 𝑓(𝑥) 

The discrete case can be used to approximate the continuous case. When going from the 

continuous to discrete case, multiply by Δ𝑥. 
 

12-6 Physics: Special Theory of Relativity 
 

For each event p occurring at  
𝑥
𝑦
𝑧
  at time t read on clock C relative to S, assign the space-time 

coordinates relative to C and S  

𝑥
𝑦
𝑧
𝑡

 . Suppose S and S’ have parallel axes and S’ moves at 

constant velocity v relative to S in the +x direction, and they coincide when their clocks C and 

C’ read 0. The unit of length is the light second. Define 𝑇𝑣  

𝑥
𝑦
𝑧
𝑡

 =  

𝑥′
𝑦′

𝑧′
𝑡′

 , where the two sets of 

coordinates represent the same event with respect to S and S’ 
 
Axioms: 



1. The speed of light is 1 when measured in either coordinate system. 
2. Tv is an isomorphism. 

3. 𝑇𝑣  

𝑥
𝑦
𝑧
𝑡

 =  

𝑥′
𝑦′

𝑧′
𝑡′

  implies 𝑦 = 𝑦′ , 𝑧 = 𝑧′. 

4. 𝑇𝑣  

𝑥
𝑦1

𝑧1

𝑡

 =  

𝑥′
𝑦′

𝑧′
𝑡′

 , 𝑇𝑣  

𝑥
𝑦2

𝑧2

𝑡

 =  

𝑥′′
𝑦′′

𝑧′′
𝑡′′

  implies 𝑥′′ = 𝑥′ , 𝑡′′ = 𝑡′. 

5. The origin of S moves in the negative x’-axis of S’ at velocity –v as measured from S’. 
 
These axioms complete characterize the Lorentz transformation Tv, whose representation in 
the standard bases is 

 𝑇𝑣 𝛽 =

 
 
 
 
 
 

1

 1 − 𝑣2
0

0 1

0
−𝑣

 1 − 𝑣2

0 0
0 0

−
𝑣

 1 − 𝑣2
0

1 0

0
1

 1 − 𝑣2 
 
 
 
 
 

 

1. If a light flash at time 0 at the origin is observed at  
𝑥
𝑦
𝑧
  is observed at time t, then 

𝑥2 + 𝑦2 + 𝑧2 − 𝑡2 = 0. 

2. Time contraction: 𝑡′ = 𝑡 1 − 𝑣2 

3. Length contraction: 𝑥′ = 𝑥 1 − 𝑣2 
 

12-7 Computer Graphics 
 

3-D computer graphics use homogeneous coordinates:  

𝑥
𝑦
𝑧
𝑐

  represents the point (
𝑥

𝑐
,
𝑦

𝑐
,
𝑧

𝑐
) (the 

point at infinity if c=0). 

The transformation… is like multiplying (on the left side) by… 

Translation by (𝑥0, 𝑦0, 𝑧0) 

 

1 0
0 1

0 0
0 0

0 0
𝑥0 𝑦0

1 0
𝑧0 1

  

Scaling by a, b, c in x, y, and z directions 

 

𝑎 0
0 𝑏

0 0
0 0

0 0
0 0

𝑐 0
0 1

  

Rotation around z-axis (similar for others) by θ  

 

cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

0 0
0 0

0 0
0 0

1 0
0 1

  

Projection onto plane through (0,0,0) 
perpendicular to unit vector n 

𝑃 =  𝐼 − 𝑛𝑛𝑇 0
0 1

  

Projection onto plane passing through Q, 
perpendicular to unit vector n 

𝑇−𝑃𝑇+ where T is the translation taking 
Q to the origin, and P is as above 



Reflection through plane through (0,0,0) 
perpendicular to unit vector n 

 𝐼 − 2𝑛𝑛𝑇 0
0 1

  

The matrix representation for an affine transformation is 

 
 
 
 
𝑇 1,0,0 − 𝑇(0,0,0) 0

𝑇 0,1,0 − 𝑇(0,0,0) 0

𝑇 0,0,1 − 𝑇(0,0,0) 0
𝑇(0,0,0) 1 

 
 
 

 

 

12-8 Linear Programming 
 

Linear programming searches for a nonnegative vector x satisfying 𝐴𝑥 = 𝑏 that minimizes (or 

maximizes) the cost 𝑐 ⋅ 𝑥. The dual problem is to maximize 𝑏 ⋅ 𝑦 subject to 𝐴𝑇𝑦 ≤ 𝑐. The 
extremum must occur at a corner. A corner is a vector𝑥 with positive entries that satisfies the 
m equations 𝐴𝑥 = 𝑏 with at most m positive components. 
 
Duality Theorem: 

If either problem has a best solution then so does the other. Then the minimum cost 𝑐 ⋅ 𝑥∗ 

equals the maximum income 𝑏 ⋅ 𝑦∗. 
 
Simplex Method: 

1. First find a corner. If one can’t easily be found, create m new variables, start with their 
sum as the cost, and follow the remaining steps until they are all zero, then revert to 
the original problem. 

2. Move to another corner that lowers the cost. Repeat for each zero component: Change 

it from 0 to 1, find how the nonzero components would adjust to satisfy 𝐴𝑥 = 𝑏, then 
compute the change in the total cost 𝑐 ⋅ 𝑥. Let the entering variable be the one that 
causes the most negative change (per single unit). Reduce the entering variable until 
the first positive component hits 0. 

3. When every other ―adjacent‖ corner has higher cost, the current corner is the optimal x. 
 

12-9 Economics 
 
A consumption matrix A has the amount of product j needed to produce product i in entry 

(i,j). Then 𝑢 = 𝐴𝑣 where v/ u are the input/ output column vectors containing the amount of 
product i in entry i. 
If the column vector y contains the demands for each product, then for the economy to meet 
the demands, there must exist a vector p with nonnegative entries satisfying 

𝑝 
input

− 𝐴𝑝 
consumption

= 𝑦 
demand

⇔  𝐼 − 𝐴 𝑝 = 𝑦 ⇒ 𝑝 =  𝐼 − 𝐴 −1𝑦 

if the inverse exists. 
 

If the largest eigenvalue… then  𝐼 − 𝐴 −1… 

is greater than 1 has negative entries 

is equal to 1 fails to exist 

is less than 1 has only nonnegative entries 

 
If the spectral radius of A is less than 1, then the following expansion is valid: 

 𝐼 − 𝐴 −1 = 𝐼 + 𝐴 + 𝐴2 + 𝐴3 + ⋯ 
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Notes 
 

I tried to make the notes as complete yet concise and understandable as possible by 

combining information from 3 books on linear algebra, as well as put in a few problem-solving tips. 

Strang’s book offers a very intuitive view of many linear algebra concepts; for example the diagram 

on ―Orthogonality of the Four Subspaces‖ is copied from the book. The other two books offer a more 

rigorous and theoretical development; in particular, Hoffman and Kunze’s book is quite complete. 

I prefer to focus on vector spaces and linear transformations as the building blocks of linear 

algebra, but one can start with matrices as well. These offer two different viewpoints which I try to 

convey: Rank, canonical forms, etc. can be described in terms of both. Big ideas are emphasized and 

I try to summarize the major proofs as I understand them, as well as provide nice summary diagrams. 

A first (nontheoretical) course on linear algebra may only include about half of the material in 

the notes. Often in a section I put the theoretical and intuitive results side by side; just use the version 

you prefer. I organized it roughly so later chapters depend on earlier ones, but there are exceptions. 

The last section is applications and a miscellany of stuff that doesn’t fit well in the other sections. 

Basic knowledge of fields and rings is required. 

Since this was made in Word, some of the math formatting is not perfect. Oh well. 

Feel free to share this; I hope you find it useful! 

Please report all errors and suggestions by posting on my blog or emailing me at 

holdenlee1@yahoo.com. (I’m only a student learning this stuff myself so you can expect errors.) 

Thanks! 

 

Things to add: Continuity arguments, linear algebra in a ring, proof of Sylvester’s law 

mailto:holdenlee1@yahoo.com

