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Preface

IF YOU ARE READING THIS, you probably fall into one of two broad

categories of people. You may be one of my colleagues who is

steeped in the mysteries of quantum theory and wants to see how

someone writes a serious book on quantum theory with no math.

Or, you may be one of the vast majority of people who look at the

world around them without a clear view of why many things in

everyday life are the way they are. These many things are not insig-

nificant aspects of our environment that might be overlooked.

Rather, they are important features of the world that are never expli-

cated because they are seemingly beyond comprehension. What

gives materials color, why does copper wire conduct electricity but

glass doesn’t, what is a trans fat anyway, and why is carbon dioxide

a greenhouse gas while oxygen and nitrogen aren’t? This lack of a

picture of how things work arises from a seemingly insurmountable

barrier to understanding. Usually that barrier is mathematics. To

answer the questions posed above—and many more—requires an

understanding of quantum theory, but it actually doesn’t require

mathematics.

This book will develop your quantum mechanics intuition,

which will fundamentally change the way you view the world. You
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viii PREFACE

have an intuition for mechanics, but the mechanics you know is

what we refer to as classical mechanics. When someone hits a long

drive baseball, you know it goes up for a while, then the path turns

over and the ball falls back to Earth. You know if the ball is hit

harder, it takes off faster and will go farther before it hits the

ground. Why does the ball behave this way? Because gravity is pull-

ing it back to Earth. When you see the moon, you know it is orbiting
the Earth. Why? Because gravity attracts the moon to the Earth. You

don’t sit down and start solving Newton’s equations to calculate

what is going on. You know from everyday experience that apples

fall down not up and that if your car is going faster it will take

longer to stop. However, you don’t know from everyday experience

why cherries are red and blueberries are blue. Color is intrinsically

dependent on the quantum mechanical description of molecules.
Everyday experience does not prepare you to understand the nature

of things around you that depend on quantum phenomena. As

mentioned here and detailed in the book, understanding features of

everyday life, such as color or electricity, requires a quantum theory

view of nature

Why no math? Imagine if this book contained discussions of a

topic that started in English, jumped into Latin, then turned back to
English. Then imagine that this jumping happened every time the

details of an explanation were introduced. The language jumping is

what occurs in books on quantum theory, except that instead of

jumping from English to Latin, it jumps from English to math. In

a hard core quantum mechanics book (for example, my own text,

Elements of Quantum Mechanics [Oxford University Press, 2001]),

you will find things like, ‘‘the interactions are described by the fol-
lowing set of coupled differential equations.’’ After the equations,

the text reads, ‘‘the solutions are,’’ and more equations appear. In

contrast, the presentation in this book is descriptive. Diagrams re-

place the many equations, with the exception of some small alge-

braic equations—and these simple equations are explained in detail.
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Even without the usual overflow of math, the fundamental philo-

sophical and conceptual basis for and applications of quantum the-

ory are thoroughly developed. Therefore, anyone can come away

with an understanding of quantum theory and a deeper understand-

ing of the world around us. If you know a good deal of math, this

book is still appropriate. You will acquire the conceptual under-

standing necessary to move on to a mathematical presentation of
quantum theory. If you are willing to do some mental gymnastics,

but no math, this book will provide you with the fundamentals of

quantum theory, with applications to atomic and molecular matter.
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Schrödinger’s Cat

WHY ARE CHERRIES RED and blueberries blue? What is the meaning

of size? These two questions seem to be totally unrelated. But, in

fact, the second question doesn’t seem to be a question at all. Don’t

we all know the meaning of size? Some things are big, and some

things are small. But, the development of quantum theory showed

that the first two questions are intimately related and that we had a
completely false concept of size until a couple of decades into the

twentieth century. Our ideas about size, if we thought about size at

all, worked just fine in our everyday lives. But beginning in approxi-

mately 1900, the physics that was used to describe all of nature, and

the physics that still works remarkably well for landing a spacecraft

on Mars, began to fall apart. In the end, a fundamentally new un-

derstanding of size was required not only to explain why cherries
are red and blueberries are blue, but also to understand the mole-

cules that make up our bodies, the microelectronics that run our

computers, why carbon dioxide is a greenhouse gas, and how elec-

tricity can move through metals. Our everyday experiences teach us

to think in terms of classical physics, the physics that was greatly

1
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advanced and formalized by Sir Isaac Newton (1642–1727). Every-

thing we know from early childhood prepares us to view nature in

a manner that is fundamentally wrong. This book is about the con-

cept of absolute size and its consequence, quantum theory, which

requires us to fundamentally change our way of thinking about na-

ture. The first half of the book describes the basic concepts of quan-

tum theory. The second half applies quantum theory to many
aspects of the world around us through an examination of the prop-

erties of atoms and molecules and their roles in everyday life.

This book began with a simple question. Does quantum me-

chanics make sense? I was asked to address this question at ‘‘Won-

derfest 2005, the Bay Area Festival of Science,’’ sponsored by the

University of California at Berkeley Department of Physics and the

Stanford University Department of Chemistry. Wonderfest is a
yearly event that presents a variety of lectures on ‘‘the latest find-

ings’’ in a number of fields to an audience of nonspecialists. How-

ever, I was not asked to discuss the latest findings in my own

research, but the topic, ‘‘does quantum mechanics make sense,’’

which has been argued about by scientists and laypeople alike since

the inception of quantum theory in 1900. In addition, I had only

one-half hour to present my affirmative answer to the question.
This was a tall order, so I spent several months thinking about the

subject and a great deal of time preparing the lecture. After the

event, I thought I had failed—not because it is impossible to make

plain the important issues for nonspecialists, but because the time

constraint was so severe. To get to the crux of the matter, certain

concepts must be introduced so that contrasts between classical me-

chanics and quantum mechanics can be drawn. This book is my
opportunity to address the quantum theory description of nature

with sufficient time to do the subject justice. The book uses very

simple math involving at most small equations. The idea is to make

quantum theory completely accessible to the nonscientist. However,

the fact that the book requires essentially no math does not mean
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that the material is simple. Reading Kierkegaard requires no math

but is not simple. However, unlike Kierkegaard, the meaning of the

material presented below should be evident to the reader who is

willing to do a little mental exercise.

Classical mechanics describes the motion of a baseball, the

spinning of a top, and the flight of an airplane. Quantum mechanics

describes the motion of electrons and the shapes of molecules such
as trans fats, as well as electrical conductivity and superconductivity.

Classical mechanics is a limiting case of quantum mechanics.

Quantum mechanics contains classical mechanics but not vice

versa. In that respect, classical mechanics is wrong. However, we

use classical mechanics to design bridges, cars, airplanes, and

dams. We never worry about the fact that the designs were not done

using the more general description of nature embodied in quantum
theory. The use of classical mechanics will not cause the bridges to

collapse, the cars to crash, the airplanes to fall from the sky, or the

dams to burst. In its own realm, the realm of mechanics that we

encounter in everyday life, classical mechanics works perfectly. Our

intuitive feel of how the world works is built up from everyday expe-

riences, and those experiences are, by and large, classical. Nonethe-

less, even in everyday life classical mechanics cannot explain why
the molecules in a blueberry make it blue and the molecules in a

cherry make it red. The instincts we have built up over a lifetime of

observing certain aspects of nature leave us unprepared to intu-

itively understand other aspects of nature, even though such aspects

of nature also pervade everyday life.

SCHRÖDINGER’S CAT

Schrödinger’s Cat is frequently used to illustrate the paradoxes that

seem to permeate the quantum mechanical description of nature.

Erwin Schrödinger (1887–1961) and Paul A.M. Dirac (1902–1984)

shared the Nobel Prize in Physics in 1933 for their contributions to
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the development of quantum theory, specifically ‘‘for the discovery

of new productive forms of atomic theory.’’ Schrödinger never liked

the fundamental interpretation of the mathematics that underpins

quantum theory. The ideas that bothered Schrödinger are the exact

topics that will be discussed in this book. He used what has come

to be known as ‘‘Schrödinger’s Cat’’ to illustrate some of the issues

that troubled him. Here, Schrödinger’s Cat will be reprised in a
modified version that provides a simple illustration of the fact that

quantum mechanics doesn’t seem to make sense when discussed

in terms of everyday life. The cats offered here are to drive the issues

home and are not in Schrödinger’s original form, which was more

esoteric. The scenario presented will be returned to later. It will be

discussed as an analogy to real experiments explained by quantum

theory, but not as an actual physical example of quantum mechan-
ics in action.

Imagine that you are presented with 1000 boxes and that you

are going to participate in an experiment by opening them all. You

are told that there is a half-dead cat in each box. Thus, if you opened

one of the boxes, you might expect to find a very sick cat. Actually,

the statement needs to be clarified. The correct statement is that

each of the cats is not half dead, but rather each cat is in a state that
is simultaneously completely dead and perfectly healthy. It is a 50-

50 mixture of dead and healthy. In other words, there is a 50%

chance that it is dead and a 50% chance that it is alive. Each of the

thousand cats in the thousand boxes is in the exact same state. The

quantum experimentalist who prepared the boxes did not place 500

dead cats in 500 boxes and 500 live cats in the other 500 boxes.

Rather, he placed identical cats that are in some sense 50-50 mix-
tures of dead and perfectly healthy in each box. While the cats are

in the closed boxes, they do not change; they remain in the live-dead

mixed state. Furthermore, you are told that when you open a box

and look in, you will determine the cat’s fate. The act of looking to

see if the cat is alive will determine if the cat is dead or alive.
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You open the first box, and you find a perfectly healthy cat. You

open the next three boxes and find three dead cats. You open an-

other box and find a live cat. When you are finished opening the

1000 boxes, you have found 500 live cats and 500 dead cats. Perhaps,

more astonishing, would be if you start again with a new set of one

1000 boxes, each containing again a 50-50 mixture of live-dead cats.

If you open the boxes in the same order as in the first trial, you will

not necessarily get the same result for any one box. Say box 10 in

the first run produced a live cat on inspection. In the second run,

you may find it produced a dead cat. The first experimental run

gives you no information on what any one box will contain the sec-

ond time. However, after opening all 1000 boxes on the second run,

you again find 500 live cats and 500 dead cats.

I have to admit to simplifying a little bit here. In two runs of the

Schrödinger’s Cats experiment, you probably would not get exactly

500 live and 500 dead cats on each run. This is somewhat like flip-

ping an honest coin 1000 times. Because the probability of getting

heads is one half and the probability of getting tails is one half, after

1000 flips you will get approximately 500 heads. However, you

might also get 496 heads or 512 heads. The probability of getting

exactly 500 heads or 500 live cats out of 1000 trials is 0.025 (2.5%).

The probability of getting 496 heads is 0.024 (2.4%) and 512 heads

is 0.019 (1.9%). The probability of getting only 400 heads or 400 live

cats out of 1000 trials is 4.6 � 10�11 � 0.000000000046. So the

probable outcomes are clustered around 500 out of a 1000 or 50%.

Knowing that you have 1000 Schrödinger’s Cat boxes with 50-50

mixtures of live-dead cats or 1000 flips of an honest coin, you can’t

say what will happen when you open one box or flip the coin one

time. In fact, you can’t even say exactly what will happen when you

open all 1000 boxes or flip the coin 1000 times. You can say what

the probability of getting a particular result is for one event and

what the likely cumulative results will be for many events.
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NOT LIKE FLIPPING COINS

A fundamental difference exists between Schrödinger’s Cats, or
more correctly real quantum experiments, and flipping pennies. Be-

fore I flip a penny, it is either heads or tails. When I flip it, I may

not know what the outcome will be, but the penny starts in a well-

defined state, either heads or tails, and ends in a well-defined state,

either heads or tails. It is possible to construct a machine that flips a

penny so precisely that it always lands with the same result. Nothing

inherent in nature prevents the construction of such a machine. If
a penny with heads up is inserted into the machine, a switch could

determine whether the penny lands heads or tails. In flipping a coin

by hand, the nonreproducibility of the flip is what randomizes the

outcome. However, a box containing Schrödinger’s Cat is com-

pletely different. The cat is a 50-50 mixture of live and dead. It is

the act of opening the box and observing the state of the cat that

causes it to change from a ‘‘mixed state’’ into a ‘‘pure state’’ of either
alive or dead. It doesn’t matter how precisely the boxes are opened.

Unlike flipping pennies, a machine constructed to open each of the

1000 boxes exactly the same way will not make the results come out

the same. The only thing that can be known about opening any one

box is that there is a 50% chance of finding a live cat.

REAL PHENOMENA CAN BEHAVE LIKE
SCHRÖDINGER’S CATS

As described, the Schrödinger’s Cat problem cannot be actualized.

However, in nature many particles and situations do behave in a

manner analogous to opening Schrödinger’s Cat boxes. Particles

such as photons (particles of light), electrons, atoms, and molecules

have ‘‘mixed states’’ that become ‘‘pure states’’ upon observation, in

a manner like that described for Schrödinger’s Cats. The things that

make up everyday matter, processes, and phenomena behave at a
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fundamental level in a way that, at first, is as counterintuitive as

Schrödinger’s Cats. However, the problem does not lie with the

behavior of electrons and atoms, but rather with our intuition of

how things should behave. Our intuition is based on our everyday

experiences. We take in information with our senses, which are only

capable of observing phenomena that involve the behavior of matter

governed by the laws of classical mechanics. It is necessary to de-
velop a new understanding of nature and a new intuition to under-

stand and accept the quantum mechanical world that is all around

us but not intuitively understandable from our sensory perceptions.



2

Size Is Absolute

THE FUNDAMENTAL NATURE OF SIZE is central to understanding the dif-

ferences between the aspects of the everyday world that fit into our

intuitive view of nature and the world of quantum phenomena,

which is also manifested all around us. We have a good feel for the

motion of baseballs, but we mainly gloss over our lack of knowledge

of what gives things different colors or why the heating element in
an electric stove gets hot and glows red. The motion of baseballs

can be described with classical mechanics, but color and electrical

heating are quantum phenomena. The differences between classical

and quantum phenomena depend on the definition of size.

The quantum mechanical concept of size is the correct view,

and it is different from our familiar notion of size. Our common

concept of size is central to classical mechanics. The failure to treat
size properly, and all of the associated consequences of that failure,

is ultimately responsible for the inability of classical mechanics to

properly describe and explain the behavior of the basic constituents

of matter. A quantum mechanical description of matter is at the

8
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heart of technological fields as diverse as microelectronics and the

computer design of pharmaceuticals.

SIZE IS RELATIVE IN EVERYDAY LIFE

In classical mechanics, size is relative. In quantum mechanics, size

is absolute. What does relative versus absolute size mean, and why

does it matter?

In classical mechanics and in everyday life, we determine

whether something is big or small by comparing it to something

else. Figure 2.1 shows two rocks. Looking at them, we would say

that the rock on the left is bigger than the rock on the right. How-

ever, because there is nothing else to compare them to, we can’t tell

if they are what we might commonly call a big rock and a small

rock. Figure 2.2 shows the rock on the left again, but this time there

is something to compare it to. The size of the rock is clear because

we have the size of a human hand as a reference. Because we know

how big a typical hand is, we get a good feel for how big the rock is

relative to the hand. Once we have the something against which to

FIGURE 2.1. Two rocks.



10 ABSOLUTELY SMALL

make a size comparison, we can say that the rock is relatively small,

but not tiny. If I were to describe the rock over the phone, I could

say it is somewhat bigger than the palm of your hand, and the per-

son I am talking to would have a good idea of how big the rock is.

In the absence of something of known size for comparison, there is

no way to make a size determination.

Figure 2.1 demonstrates how much we rely on comparing one

thing to another to determine size. In Figure 2.1, the two rocks are

on a white background, with no other features for reference. Their

proximity immediately leads us to compare them and to decide that

the rock on the left is larger than the rock on the right. Figure 2.3

shows the rock on the right in its natural setting. Now we can see

that it is actually a very large rock. The hand on the rock gives a very

good reference from which to judge its size. Like the rock in the

hand, the rock with the hand on top provides us with a scale that

permits a relative determination of size. It is clear from these sim-

ple illustrations that under normal circumstances, we take size to

be relative. We know how big something is by comparing it to some-

thing else.

FIGURE 2.2. The rock from Figure 2.1 in a hand.
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FIGURE 2.3. The other rock from Figure 2.1, but now in a context from

which its size can be judged.

OBSERVATION METHOD CAN MATTER

Why does the definition of size, relative versus absolute, matter? To

observe something, we must interact with it. This is true in both

classical and quantum mechanics.

Figure 2.4 illustrates the observation of a rose. In a totally dark

room, we cannot see the rose. In Figure 2.4, however, light emanat-

ing from the light bulb falls on the rose. Some of the light is ab-

sorbed, and some of it bounces off. (Which colors are absorbed, and

therefore, which colors bounce off to make the leaves look green

and the petals look red, is a strictly quantum mechanical phenome-

non that will be discussed in Chapter 8.) A portion of the light that
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FIGURE 2.4. The light bulb illuminates the rose. The light that bounces

off the rose enters the eye, enabling us to see the rose.

bounces off is detected by the eye and processed by the brain to

observe the rose. The observer is interacting with the rose through

the light that bounces off of it.

Once we recognize that we must interact with an object to ob-

serve it, we are in a position to define big and small. The definition

of what is big and what is small is identical in classical mechanics

and quantum mechanics. If the disturbance to an object caused by
an observation, which is another way of saying a measurement, is

negligible, then the object is big. If the disturbance is nonnegligible,

the object is small. In classical mechanics, we make the following

assumption.

Assume: When making an observation, it is always possible to

find a way to make a negligible disturbance.

If you perform the correct experiment, then the disturbance that

accompanies the measurement is negligible. Therefore, you can ob-
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serve a system without changing it. However, if you do the wrong
experiment in trying to study a system, you make a nonnegligible
disturbance, and the object is small. A nonnegligible disturbance
changes the system in some way and, it is desirable, if possible, to
make a measurement that doesn’t change the thing you are trying
to measure. Classical theory assumes that you can reduce the size
of the disturbance to be as small as desired. No matter what is under
observation, it is possible to find an experimental method that will
cause a negligible disturbance. This assumed ability to find an ex-
periment that produces a negligible disturbance implies that size is

only relative. The size of an object depends on the object and on your
experimental technique. There is nothing inherent. Any object can
be considered to be big by observing it with the correct method, a
method that causes a negligible disturbance.

Suppose you decide to examine the wall of a room in which you
are sitting by throwing many billiard balls at it. In your experiment,
you will observe where the balls land after they bounce off of the
wall. You start throwing balls and, pretty soon, plaster is flying all
over the place. Holes appear in the wall, and the balls you throw
later on don’t seem to bounce off the same way the earlier balls did.
This may not be surprising because of the gaping holes that your
measurement method is making in the wall. You decide that this is
not a very good experiment for observing the wall. You start over
again after having a good painter restore the wall to its original state.
This time you decide to shine light on the wall and observe the light
that bounces off of the wall. You find that this method works very
well. You can get a very detailed look at the wall. You observe the
wall with light for an extended period of time, and the properties
you observe do not change.

BIG OR SMALL—IT’S THE SIZE
OF THE DISTURBANCE

When the wall was observed with billiard balls, it was small because
the observation made a nonnegligible disturbance. When the wall
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was observed with light, it was big. The observation made a negligi-

ble disturbance. In these experiments, which can be well described

with classical mechanics, the wall’s size was relative. Do the poor

experiment (observation with billiard balls), and the wall is small.

Do a good experiment (observation with light), and the wall is big.

In classical mechanics, there is nothing intrinsic about size.

Find the right experiment, and any object is big. It is up to the
experimental scientist to design or develop the right experiment.

Nothing intrinsic in classical mechanics theory prevents a good ex-

periment from being performed. A good experiment is one that

produces a negligible disturbance during the measurement. In

other words, a good experiment does not change the object that is

being observed, and, therefore, the observation is made on a big

object.

CAUSALITY FOR BIG OBJECTS

The importance of being able to make any object big is that it can

be observed without changing it. Observing an object without

changing it is intimately related to the concept of causality in classi-

cal mechanics. Causality can be defined and applied in many ways.
One statement of causality is that equal causes have equal effects.

This implies that the characteristics of a system are caused by ear-

lier events according to the laws of physics. In other words, if you

know in complete detail the previous history of a system, you will

know its current state and how it will progress. This idea of causality

led Pierre-Simon, Marquis de Laplace (1749–1827), one of the most

renowned physicists and mathematicians, to declare that if the cur-
rent state of the world were known with complete precision, the

state of the world could be computed for any time in the future. Of

course, we cannot know the state of the world with total accuracy,

but for many systems, classical mechanics permits a very accurate

prediction of future events based on accurate knowledge of the cur-
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rent state of a system. The prediction of the trajectory of a shell in

precision artillery and the prediction of solar eclipses are examples

of how well causality in classical mechanics works.

As a simple but very important example, consider the trajectory

of a free particle, such as a rock flying through space. A free particle

is an object that has no forces acting on it, that is, no air resistance,

no gravity, etc. Physicists love discussing free particles because they

are the simplest of all systems. However, it is necessary to point

out that a free particle never really exists in nature. Even a rock in

intergalactic space has weak gravity influencing it, weak light shin-

ing on it, and occasionally bumps into a hydrogen atom out there

among the galaxies. Nonetheless, a free particle is useful to discuss

and can almost be realized in a laboratory. So our free particle is a

hypothetical true free particle despite its impossibility.

The free particle was set in motion some time ago with a mo-

mentum p, and at the time we will call zero, t � 0, it is at location

x. x is the particle’s position along the horizontal axis. The trajectory

of the rock is shown in Figure 2.5 beginning at t � 0. The momen-

tum is p � mV where m is the mass of the object and V is its

velocity. The mass on earth is just its normal weight. If the rock is

on the moon, it has the same mass, but it would have one-sixth the

weight because of the weaker pull of gravity on the moon.

A very qualitative way to think about momentum is that it is a

measure of the force that an object could exert on another object if

FIGURE 2.5. A free particle in the form of a rock is shown moving along

a trajectory.

t = t' 

observe observe

a rock 
t = 0 

x - position 
p - momentum 
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they collided. Imagine that a small boy weighing 50 pounds runs

into you going 20 miles per hour. He will probably knock you down.

Now imagine that a 200-pound man runs into you going 5 miles

per hour. He will probably also knock you down. The small boy is

light and moving fast. The man is heavy and moving slow. Both

have the same momentum, 1000 lb�miles/hour. (lb is the unit for

pound.) In some sense, both would have the same impact when
they collide with you. Of course, this example should not be taken

too literally. The boy might hit you in the legs while the man would

hit you in the chest. But in a situation where these types of differ-

ences did not occur, either would have essentially the same effect

when running into you.

Momentum is a vector because the velocity is a vector. A vector

has a magnitude and a direction. The velocity is the speed and the
direction. Driving north at 60 mph is not the same as driving south

at 60 mph. The speed is the same, but the direction is different. The

momentum has a magnitude mV and a direction because the veloc-

ity has a direction. In Figure 2.5, the motion is from left to right

across the page.

At t � 0 we observe (make measurements of ) the rock’s posi-

tion and momentum. Once we know x and p at t � 0, we can
predict the trajectory of the rock at all later times. For a free particle,

predicting the trajectory is very simple. Because there are no forces

acting on the particle, no air resistance to slow it down or gravity to

pull it down to earth, the particle will continue in a straight line

indefinitely. At some later time called t� (t prime), t � t�, the rock

will have moved a distance d � Vt�. The distance is the velocity

multiplied by how long the particle has been traveling. Since we
started at time equal to zero, t � 0, then t� is how long the particle

has been moving—for example, one second. So at time t� we know

exactly where to look for the rock. We can make an observation to

see if the particle is where we think it should be and, sure enough,

there it is, as shown in Figure 2.5. We can predict where it will be
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at a later time, and observe that it is in fact there. This is shown on

the right side of Figure 2.5. We have predicted where the particle

will be, and when we make an observation, it is there. The rock is

traveling with a well-defined trajectory, and the principle of causality

is obeyed.

NONNEGLIGIBLE DISTURBANCES MATTER

Now consider Figure 2.6. The rock is prepared identically to the

situation shown in Figure 2.5. At t � 0, it has position x and mo-

mentum p. Again it is observed at t � t�.

Its position is as predicted from the values of x and p at t � 0.

However, some time after t � t�, a bird flies into a rock. (You will
have to forgive my drawing of the bird. This is the best I can do on

a computer with a mouse.) In the jargon of physics, we might refer

to this as a bird-rock scattering event. The bird hitting the rock

makes a nonnegligible disturbance. Therefore, it is not surprising

that a measurement of the position and momentum made some

FIGURE 2.6. A free particle in the form of a rock is moving along a

trajectory. At time t � 0, it has position x and momentum p. At a later

time, t � t�, it has moved to a new position where it is observed, and its

future position is predicted. However, some time later, a bird flies into

the rock. The prediction made at t� is no longer valid.

?
?

?

?
?
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observex – position 
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      predict 

a rock 
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time after the scattering event will not coincide with the predictions

made based on the trajectory determined at t � 0. According to the

precepts of classical mechanics, if we knew everything about the

bird, the rock, and how they interact (collide with each other), we

could make a prediction of what would happen after the bird-rock

scattering event. We could test our predictions by observation. Ob-

servation is possible in classical mechanics because we can find a
method for observation that makes a negligible disturbance of the

system. That is, we can always find a way to make the system big.

But the important point is that following a nonnegligible distur-

bance, it is not surprising that predictions are not fulfilled, as they

were based on the known trajectory that existed prior to the distur-

bance.

THERE IS ALWAYS A DISTURBANCE

Quantum theory is fundamentally different from classical mechan-

ics in the way it treats size and experimental observation; the differ-

ence makes size absolute. Dirac succinctly put forward the
assumption that makes size absolute.

Assume: There is a limit to the fineness of our powers of observa-

tion and the smallness of the accompanying disturbance, a limit

that is inherent in the nature of things and can never be sur-

passed by improved technique or increased skill on the part of

the observer.

This statement is a wild departure from classical thinking. It says
that whenever you observe a system (make a measurement), there

is always a disturbance; it may be small, but it is always there. The

size of this disturbance is part of nature. No improvements in in-

strumentation or new methods of observation can make this mini-

mum disturbance vanish or become smaller.
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SIZE IS ABSOLUTE

Dirac’s statement has ramifications that are part of all formulations

of quantum theory. His assumption immediately makes size abso-

lute. An object is big in the absolute sense if the minimum distur-

bance that accompanies a measurement is negligible. An object is

small in the absolute sense if the inherent minimum disturbance is

not negligible. At the most fundamental level, classical mechanics

is not set up to describe objects that are small in the absolute sense.

In classical mechanics, any object can be made ‘‘big’’ by finding the

right experiment to use in making an observation. In the develop-

ment of classical mechanics, it was never envisioned that because

of the inherent properties of nature, it was impossible to improve

methodology to the point where an observation did not change a

system. Therefore, classical mechanics is not set up to deal with

objects that are small in an absolute sense. Its inability to treat ob-

jects that are absolutely small, such as electrons or atoms, is the

reason that classical mechanics fails when it is applied to the de-

scription of such objects.

Figure 2.7 illustrates the nature of the problem. An electron is

a particle that is small in the absolute sense. (Later we will discuss

in detail the meaning of the word particle, which is not the same as

the classical concept of particle.) At t � 0, it is moving along a

trajectory. As with the rock, we want to see if it is actually doing

what we think it is doing so that we can make subsequent predic-

tions. We use the least invasive method to observe the electron; we

let it interact with a single particle of light, a photon. (Below is a

detailed discussion of the nature of light and what it means to have

a particle of light.) Here is what makes this problem completely

different from that illustrated in Figure 2.5. Because an electron is

absolutely small, even observing it with a single particle of light

causes a nonnegligible disturbance. The electron is changed by the

observation. We cannot make subsequent predictions of what it will
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FIGURE 2.7. At time, t � 0, an electron is moving along some trajectory.

At time, t � t�, we observe it in a minimally invasive manner by letting

it interact with a single particle of light, a photon. (Photons are discussed

in detail later.) The electron-photon interaction causes a nonnegligible

disturbance. It is not possible to make a causal prediction of what hap-

pens after the observation.

an electron 

t = 0 

t = t' 

observe

photon

predict 

?
?

?

?
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do once we observe it to see if it is doing what we think it is doing.

Causality applies to undisturbed systems. The act of observing the

electron disturbs it. You can predict what a system is doing as long

as you don’t look to see if it is actually doing what you think it
should be doing. Therefore, causality does not apply to systems that

are absolutely small. The act of observation destroys causality. Inde-

terminacy, that is a certain type of indefiniteness, comes into the

calculation of observables for absolutely small systems. A system is

absolutely small if the minimum disturbance that accompanies a

measurement is not negligible. An absolutely small system can’t be

observed without changing it.

CAN’T CALCULATE THE
FUTURE—ONLY PROBABILITIES

Unlike in classical mechanics, once an observation is made for a

quantum system, it is not possible to say exactly what another obser-
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vation will yield. This lack of exactitude is not like the bird hitting

the rock in Figure 2.6. In the bird-rock case, it is possible, if difficult,

in principle to predict the result of the next observation. We would

need to know all of the properties of the bird and the rock, as well

as the exact details of how the bird hit the rock (e.g., the velocities

and masses of the bird and the rock and the angle at which they

hit). In the electron–photon case, it is impossible to predict exactly
what the results of the next observation will be. What quantum the-

ory can do is predict the probability of obtaining a particular result.

In the Schrödinger’s Cats example, when a box was opened, either

a dead cat or a live cat was found. There was no way to predict which

it would be. Opening the box (observing the cat) changed the cat

from being in a type of mixed live-dead state into either a pure live

state or a pure dead state. If many boxes were opened, the probabil-
ity of finding a cat alive was 50%, but there was no way to predict

what would happen when a particular box was opened (a single

measurement). The cat problem is not physically realizable and,

therefore, it is not a true quantum mechanical problem. A physi-

cally real problem that is akin to the cat problem is discussed in a

later chapter. The cat problem was intended to introduce the idea

that an observation can change a system and that only a probability
could be ascertained from a series of experiments. For real systems

that are absolutely small, quantum mechanics is the theory that

permits the calculation and understanding of the distribution of

probabilities that are obtained when measurements are made on

many identically prepared systems. How quantum mechanical

probability distributions arise and how to think about the nature of

the disturbance that accompanies measurements on absolutely
small systems are discussed in the following chapters.



3

Some Things About Waves

TO ADDRESS THE NATURE of the inherent disturbance that accompanies

a measurement and to understand what can and cannot be measured

about an absolutely small quantum mechanical system, first it is nec-

essary to spend some time discussing classical waves and the classical

description of light. At the beginning of the twentieth century, a vari-

ety of experiments produced results that could not be explained with
classical mechanics. The earliest of these involved light. Therefore,

we will first discuss an experiment that seemed to show that classical

ideas work perfectly. Then, in Chapter 4, we will present one of the

experiments that demonstrated that the classical mechanics descrip-

tion could not be correct and, furthermore, that a classical reanalysis

of the experiment seemed to work, but actually didn’t. Finally, the

correct analysis of the experiment involving light will be given using
quantum ideas, which will bring us back to Schrödinger’s Cat.

WHAT ARE WAVES?

There are many types of classical waves, water waves, sound waves,

and light waves (electromagnetic waves). All waves have certain

22
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common properties, including amplitude, wavelength, speed, and

direction of propagation (the direction in which a wave is traveling).

Figure 3.1 shows a wave traveling in the x direction. The amplitude

of the wave is the ‘‘distance’’ between its positive and negative

peaks, the up-to-down distance. The wavelength is the distance

along the direction of propagation between two positive or negative

peaks. This is the distance over which the wave repeats itself. If

you are riding on the wave and you move any integer number of

wavelengths forward or backward along the wave, everything looks

the same. The wave is traveling with some velocity, V.

WAVES HAVE VELOCITIES AND FREQUENCIES

The velocity depends on the type of wave, and the velocity of a

wave needs a little discussion. Imagine you are standing beside

the wave in Figure 3.1, but the wave is so long that you cannot see

its beginning or end. Still, you can determine its velocity using a

timing device. Start timing when a positive peak just reaches you

and stop timing when the next positive peak reaches you. You

now have enough information to determine the wave’s velocity.

FIGURE 3.1. A wave traveling in the x direction. The black line represents

zero amplitude of the wave. The wave undergoes positive and negative

oscillations about zero. The distance between the peaks is the wavelength.

The wave is traveling along x with a velocity V.

x

+

-
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The wave has traveled d, a distance, of one wavelength, in time t.

The distance equals the velocity multiplied by the time, d � Vt.

(If you are in a car going at velocity, V � 60 miles per hour, and

you travel for a time, t � 1 hour, then you have traveled a dis-

tance, d � 60 miles.) If we take the distance of one wavelength

and divide it by the time it took to travel one wavelength, then we

know the velocity, V � d/t. Watching the wave go by is like watch-

ing a very long train go by. You see boxcar after boxcar pass you.

If you know the length of one boxcar and how long it takes that

one boxcar to pass by, then you can determine the velocity of the

train.

Another important property of waves that is related to their ve-

locity and wavelength is the frequency. Scientists love using Greek

letters to represent things because we tend to use up all of the

Roman letters early on. There is no reason the velocity has to be V

or distance d or time, t, but these are usually used, and many of the

letters of the Roman alphabet have common usages. Therefore, we

turn to the Greek alphabet. It is common to call a wave’s wavelength

λ (lambda) and a wave’s frequency ν (nu). To see what the frequency

is, again consider the train of box cars passing by. If you count how

many boxcars go by in a certain amount of time, you have found

the box car frequency. If 10 boxcars go by in a minute, the frequency

is 10 per minute, which would usually be written as 10/minute. The

frequency of a wave is determined by how many cycles (peaks) go

by a point in a second. If 1000 cycles pass by a point in a second,

the frequency is ν � 1000/s � 1000 Hz. Lowercase s is used for

the units of seconds. Per second has its own unit, Hz, for Hertz,

which is in honor of Gustav Ludwig Hertz (1887–1975), who shared

the Nobel Prize in Physics in 1925 with James Franck ‘‘for their

discovery of the laws governing the impact of an electron upon an

atom.’’ The wavelength, velocity, and frequency of a wave are related

through the equation, λν � V.
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OCEAN WAVES

Waves in the deep ocean travel with the crest above the average sea
level and the troughs below sea level. A typical ocean wave has a

wavelength λ � 160 m (520 ft) and travels with a velocity of 60

km/hr (60 kilometers per hour, or 38 miles per hour). The period,

which is the time between wave crests, is 10 s, so the frequency ν

� 0.1 Hz. The amplitude is just the distance between a crest and

a trough. Therefore, it is relatively straightforward to visualize the

amplitude. (Waves break at the beach because the troughs drag on
the ocean bottom in shallow water, which slows them down. The

crests move faster than the troughs and fold over to produce the

breaking waves we see at the beach. Waves traveling in the ocean

do not break.)

SOUND WAVES

Sound waves are density waves in air. A standard tuning fork A

above middle C is 440 Hz. When you strike the tuning fork, the
tines vibrate at 440 Hz. The vibration produces sound waves. The

tines moving back and forth ‘‘push’’ the air back and forth at 440

Hz, producing a wave with frequency, ν � 440 Hz. At 70�F, the

speed of sound is V � 770 miles per hour, which is 345 m/s. Be-

cause λν � V, the wavelength of the 440 Hz sound wave is λ �

0.78 m (2.55 ft). The sound wave consists of air density going above

the average density and then below the average density, more air

and then less air. The density is the weight of air in a unit of volume,

for example the number of grams in a cubic centimeter (g/cm3).

Increased density can be associated with increased pressure. So you

could also think of the sound wave as a pressure wave in which the

air pressure goes up and down at 440 Hz. When the sound wave

enters your ear, the up-and-down oscillation of the pressure causes

your eardrum to move in and out at the frequency of the sound
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wave, in this case, 440 Hz. The motion of the eardrum transfers the
sound into the interior of the ear and tiny hairs are wiggled depend-
ing on the frequency of the sound. The motion of these hairs stimu-
lates nerves, and the brain decodes the nerve impulses into what we
perceive as sounds.

The amplitude of a sound wave is the difference between the
maximum and minimum density (maximum and minimum pres-
sure). In contrast to an ocean wave, you cannot see the amplitude
of a sound wave, but you can certainly hear the differences in the
amplitudes of sound waves. It is relatively simple to obtain electrical
signals from sound waves, which is what a microphone does. Once
an electrical signal is produced from a sound wave, its amplitude
can be measured by measuring the size of the electrical signal. Like
all classical waves, sound waves propagate in a direction and have
an amplitude, a wavelength, and a velocity.

CLASSICAL LIGHT WAVES

The discussion of ocean waves and sound waves sets the stage for
the classical description of light as light waves. In the classical de-
scription of light, explicated in great detail with Maxwell’s Equations
(James Clerk Maxwell, 1831–1879), light is described as an electro-
magnetic wave. The wave has an electric field and a magnetic field,
both of which oscillate at the same frequency. You have experienced
electric and magnetic fields. If you have seen a magnet pull a small
object to it, then you have seen the effect of a magnetic field. The
magnetic field from a magnet is static, not oscillatory as in light.
You may have also seen the effects of electric fields. If you have
combed your hair on a very dry day with a plastic comb, you may
have noticed that your hair is attracted to it. After combing, very small
bits of paper may jump to the comb as the comb is brought close to
them. These effects are caused by a static electric field. An electro-
magnetic wave has both electric and magnetic fields that oscillate.

Unlike ocean waves, which travel in water, and sound waves,
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which travel in air, light waves can travel in a vacuum. In a vacuum,

the velocity of light is given the symbol c, and c � 3 � 108 m/s.

The speed of light is about a million times faster than the speed of

sound. This is the reason why you see distant lightning long before

you hear it. Sound takes about 5 seconds to travel a mile. Light

takes about 0.000005 s or 5 μs (microseconds) to travel a mile. The

velocity of light is slower when it is not traveling in a vacuum. In
air it is almost the same as in a vacuum, but in glass it travels at

about two-thirds of c.

What is an electromagnetic wave, which is the classical descrip-

tion of light? In a water wave, we have the height of the water above

and below sea level oscillating. In a sound wave, the air density or

pressure oscillates above and below the normal values. If you take a

small volume, the amount of air (number of molecules that make
up air, mostly oxygen and nitrogen) goes above and below the aver-

age amount of air in the volume. In an electromagnetic wave, two

things actually oscillate, an electric field and a magnetic field. We

usually talk about the electric field because it is easier to measure

than the magnetic field. The oscillating electric field is an electric

wave. When you listen to the radio, the radio antenna is a piece of

wire that detects the radio waves. Radio waves are just low fre-
quency electromagnetic waves. They are the same as light waves,

but much lower in frequency. The electric field in an electromag-

netic wave oscillates positive and negative from a maximum positive

amplitude value to the same negative value. The metal in a radio

antenna has many electrons that can be moved by an electric field.

(Electrons will be discussed in detail further on, and electrical con-

duction will be discussed in Chapter 19.) The oscillating electric
field of a radio wave causes the electrons in the antenna to oscillate

back and forth. The electronics in the radio amplify the oscillations

of the electrons in the antenna and convert these oscillations into

an electrical signal that drives the speakers to make the sound waves

that you hear. So we can think of light classically as an oscillating
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electric field and an oscillating magnetic field. Both oscillate at the
same frequency and travel together at the same speed in the same
direction. This is why they are called electromagnetic waves.

VISIBLE LIGHT

For light in a vacuum, λν � c. The visible wavelengths, that is, the
wavelengths we can see with our eyes, range from 700 nm (red) to
400 nm (blue). (A nm is a nanometer, which is 10�9 meters or
0.000000001 meters.) The visible wavelengths of light are very
small; the velocity of light is very high. Therefore, the frequencies
of visible light waves are very high. Red light has ν � 4.3 � 1014

Hz, and blue light has ν � 7.5 � 1014 Hz. 1014 is 100 trillion.
Contrast light frequencies to a sound wave frequency (440 Hz) or
an ocean wave frequency (0.1 Hz). Unlike an ocean wave or a sound
wave, there is a complication in measuring the amplitude of a light
wave. The frequency of light is so high that even the most modern
electronics cannot see the oscillations. Rather than measuring the
amplitude of the wave, defined as the amplitude of the oscillating
electric field, the intensity of light is measured. The intensity, I, is
proportional to the absolute valued squared of the electric field E,
which is written as I � �E�2. The absolute value, the two vertical lines
� �, just means, for example, if there is a sign, positive or negative,
we ignore it and just make everything positive. A photodetector, like
the CCD in a digital camera (a CCD, or charge coupled device,
makes an electrical signal when light strikes it), measures the
amount of light, the intensity, rather than the amplitude of a light
wave. Your eye does not directly measure the frequency of light
waves in contrast to your ear, which measures the frequency of
sound waves.

ADDING WAVES TOGETHER—INTERFERENCE

Waves of any kind, including light waves, can be added together to
give new waves. Figure 3.2 shows on the left two identical waves
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(same wavelength, same amplitude, propagating in the same direc-

tion) that are in phase. (The waves are actually on top of each other,

but they have been displaced so that we can see them individually.)

‘‘In phase’’ means that the positive peaks of one wave line up exactly

with the positive peaks of the other wave, and therefore, the negative

peaks also line up. The vertical dashed line in Figure 3.2 shows that

the peaks line up. When waves are in phase, we say that the phase

difference is 0� (zero degrees). One cycle of a wave spans a phase of

360�. Starting at any point on a wave, if you go along the wave for

360�, you are in an equivalent position, like going 360� around a

circle. When two identical waves are added in phase, the resultant

wave has twice the amplitude. This is called constructive interfer-

ence, as shown on the right side of Figure 3.2.

Waves that are 180� out of phase can also be added together. As

shown on the left side of Figure 3.3, waves that are 180� out of phase

have the positive peaks of the top wave exactly lined up with the

negative peaks of the bottom wave and vice versa. (Again, for inter-

ference to occur the waves need to actually be on top of each other,

but they have been displaced so that we can see them clearly.) The

dashed vertical line in Figure 3.3 shows that the positive peak of

one wave is exactly lined up with the negative peak of the other

FIGURE 3.2. Two identical waves that are in phase. The waves undergo

positive and negative oscillations about zero (horizontal line). The posi-

tive peaks line up, and the negative peaks line up. They undergo construc-

tive interference (are added together) to form a wave with twice the

amplitude.

constructive interference 
amplitude doubled in phase (0°) 

+

+
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FIGURE 3.3. Two identical waves that are 180� out of phase. The waves

undergo positive and negative oscillations about zero (horizontal line).

The positive peaks of the top wave line up exactly with the negative peaks

of the bottom wave, and the negative peaks of the top wave line up exactly

with the positive peaks of the bottom wave. The two waves undergo de-

structive interference when they are added together to produce zero am-

plitude.

destructive interference 
amplitude zero 

+

+

out of phase (180°) 

wave. When two identical waves that are 180� out of phase are

added, the positive peaks and the negative peaks exactly cancel. For

example, take the maximum positive value to be �1 and the maxi-

mum negative value to be �1. Adding �1 and �1 gives zero. In

Figure 3.3 each point on the top wave that is positive lines up per-

fectly with a point on the bottom wave that is the same amount

negative, and each point of the top wave that is negative lines up

with an equivalent point on the bottom wave that is the same

amount positive. Therefore, the waves exactly cancel to give zero

amplitude as shown on the right side of the figure. This cancellation

is called destructive interference.

INTERFERENCE PATTERNS AND
THE OPTICAL INTERFEROMETER

Waves do not have to be right on top of each other and going in the

same direction to interfere. They just have to overlap in some region

of space, and interference can occur in that region. When Davies
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Symphony Hall in San Francisco was opened in 1980, it had acous-

tic problems. While the problems were very complicated, it is easy

to see how they developed. Imagine that you are sitting in the audi-

ence pretty far back from the orchestra. When a 440 Hz A is played,

the acoustic wave comes directly at you but it also bounces off of

the walls on either side of you. If there is a reflection from the wall

to your right and a reflection from the wall to you left so that the
reflected acoustic waves (sound waves) from each wall comes to

your row of seats at, for example, a 30� angle, an interference pat-

tern will be produced along your row of seats. There will be places

where reflected waves constructively interfere and make the sound

louder and places where the waves destructively interfere and make

the sound softer. The spacing between a peak and a null of the

interference pattern is 2.4 ft (see below for the spacing formula). So
depending on your seat, the 440 Hz A will be louder or softer. Of

course, there are many frequency acoustic waves coming at you

from many directions. The combined interference effects distorted

the sound that should have been coming straight at you from the

orchestra. The problem in Davies Hall was fixed in 1992 by the

installation of 88 carefully designed panels hanging from the ceil-

ing along the two side walls. No two panels are identical. They are
filled with sand and weigh as much as 8500 pounds. These panels

prevented the reflections from the walls from going into the audi-

ence.

Light can also undergo interference phenomena. The classical

view of optical interference patterns can reproduce experimental

results, as we are about to see. However, as discussed in Chapters

4 and 5, ultimately the classical description fails when other experi-
ments are considered. The correct description will introduce the

quantum mechanical superposition principle and bring us back to

Schrödinger’s Cats.

Figure 3.4 shows a diagram of an interferometer used by Mi-

chelson (Albert Abraham Michelson, 1853–1931) in his studies of
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FIGURE 3.4. The incoming light wave hits a 50% reflecting mirror. Half

of the light goes through the mirror and half reflects from it. The light

in each leg of the interferometer reflects from the end mirrors. Part of

each beam crosses in the overlap region at a small angle. To the right

of the circled overlap region is a blowup of what is seen along the x

direction when two beams cross. An interference pattern is formed in

which the intensity varies along x from a maximum value to zero

periodically.

Intensity oscillates
along x direction
Detect with film or
digital camera

I

interference pattern

x

overlap region
Beams cross at angle 
in overlap region

Constructive interference
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light wave

the nature of light waves. Michelson won the Nobel Prize in Physics

in 1907 ‘‘for his optical precision instruments and the spectroscopic

and metrological investigations carried out with their aid.’’ Michel-
son and Morley, who was a coworker of Michelson, used an interfer-

ometer to attempt to determine the nature of the medium in which

light waves propagated. Water waves propagate in water. Sound

waves propagate in air. The Michelson-Morley experiment showed

that light waves do not have an underlying medium, which had

been called the aether. Light can propagate in a vacuum. There is
no aether that pervades space. Light waves traveling to us from the
stars are not traveling in a medium the way ocean waves and sound
waves travel in water and air, respectively. This was an important
step in recognizing that light waves are not waves in the same sense
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as sound waves. Here we only want to understand the classical de-

scription of what is observed with an interferometer.

In Figure 3.4, a beam of light, taken to be a light wave, enters

the apparatus from the left. The light hits a partially reflecting

‘‘beam-splitting’’ mirror that reflects 50% of the light intensity and

transmits 50% of the light intensity. In the wave description of light,

there is no problem having part of the wave go one way and part
the other way. The reflected light goes vertically up the page, reflects

from end mirror 1, which is at a small angle so the reflected beam

does not quite go right back along the same path. The reflected

beam goes down the page and part of it goes right through the beam-

splitting mirror. (Part of this beam reflects from the beam splitter,

but we are not concerned with this portion.) This path is leg 1 of

the interferometer. The 50% of the original beam that goes through
the beam splitter hits end mirror 2, which is also at a small angle.

This reflected beam travels back to the left, almost retracing its orig-

inal path. It reflects from the beam splitter. (The portion that goes

through the beam splitter is unimportant for our considerations.)

The reflected portion heads down the page. This path is leg 2 of the

interferometer. The result is that the two beams, one that traveled

leg 1 and one that traveled leg 2, come together after traveling the
same distance and cross at a small angle in the ‘‘overlap region’’

shown by the circle in Figure 3.4. This crossing of the light waves

is like the crossing of the sound waves in Davies Symphony Hall

that caused the interference problems.

In Figure 3.4 the light beams are drawn as lines, but in any real

experiment the beams have a width. The x direction shown in the

figure is perpendicular to the bisector of the angle (the line that
splits the angle) made by the crossing beams. Since the angle is

small, the x direction is basically perpendicular to the propagation

direction of the beams, and in the figure it is the horizontal direc-

tion. A blowup of what is seen along the x direction in the overlap

region is shown in the lower right portion of the figure. In the graph
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the vertical axis is the intensity of the light, I, and the horizontal

axis is the position along x. Because the beams cross at a small

angle, the phase relationship between them varies along the x direc-

tion, and there are alternating regions of constructive and destruc-

tive interference. The intensity of the light varies from a maximum

value to zero back to the maximum, and again to zero, and so on.

The crossed light waves form regions of constructive and destruc-
tive interference. At the intensity maxima, the light waves are in

phase (0�—see Figure 3.2), and they add constructively to give in-

creased amplitude. At the zeros of intensity, the light waves are 180�

out of phase (see Figure 3.3), and they add destructively, to exactly

cancel. This pattern can be observed by placing a piece of photo-

graphic film or a digital camera in the overlap region to measure

the intensity at the different points along the x direction.
For a small angle, the fringe spacing, that is, the spacing, d,

between a pair of intensity peaks or nulls is given by d � λ/θ, where

λ is the wavelength of light, and θ is the angle between the beams

in radians (1 radian � 57.3 degrees). If 700 nm red light is used,

and the angle between the beams is 1�, the fringe spacing is 40 μm

or 1.6 thousandths of an inch. These fringes can be seen with film

or a good digital camera. If the angle is 0.1�, the fringe spacing is
0.4 mm, which you can see by eye. If the angle is 0.01� (an exceed-

ingly small angle), the fringe spacing is 4 mm (about a sixth of an

inch), which you can easily see by eye. To have 4 mm fringes, the

beams that cross must be much larger in diameter than 4 mm.

As discussed, in the classical description, light is an electromag-

netic wave, and the intensity is proportional to the square of the

electric field amplitude (size of the wave in Figure 3.1). In the fol-
lowing, we are not going to worry about units. By including a lot

of constants, the units in the following all work out, but they are

unimportant for our purposes here. Take the electric field in one of

the beams in one leg of the interferometer to have an amplitude of

10. Then the intensity is 100 (102 � 100 � 10�10). The other beam
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also has I � 100. These are the intensities when we are not observ-
ing in the beam overlap region. When the beams are separated, the
sum of their intensities is 200. What happens in the overlap region?
Waves constructively interfere in some places and destructively in-
terfere in others (see Figure 3.4, lower right). Therefore, to deter-
mine the intensities in the overlap region, it is necessary to add
the electric field amplitudes and then square the result to find the
intensities. At an intensity maximum in the overlap region, the
waves are perfectly in phase and add constructively. The electric
field from beam 1 adds to the electric field from beam 2, that is, E
� 10 � 10 � 20. Then the intensity in a peak in the interference
pattern is I � E2 � 202 � 400. The intensity is 400, twice as great
as the intensity of just the sum of the intensities of the two beams
by themselves when they are not constructively interfering. In a
null of the interference pattern, the waves destructively interfere
perfectly. An electric field of �10 adds to an electric field of �10,
to give zero. The electric field equals zero, and I � 0. Therefore, the
interference pattern is caused by alternating regions of constructive
and destructive interference of electromagnetic waves. In some
places the waves add, and we see a peak. In some places the waves
subtract to give zero. Interference is a well-known property of
waves, and the interference pattern produced by the interferometer
seemed to be a perfect example of a wave phenomenon.

The interferometer and the interference pattern shown in Fig-
ure 3.4 can be described in complete detail using classical electro-
magnetic theory. The details of the interference pattern can be
calculated with Maxwell’s equations. This and many other experi-
ments, including the transmission of radio waves, can be described
with classical theory. Therefore, classical theory, which treats light
as a wave, appeared to be correct up to the beginning of the twenti-
eth century. However, Chapter 4 shows how Einstein’s explanation
of one phenomenon, the photoelectric effect, caused the beautiful
and seemingly infallible edifice of classical electromagnetic theory
to require fundamental rethinking.



4

The Photoelectric Effect

and Einstein’s Explanation

AT THE END OF THE NINETEENTH CENTURY, classical electromagnetic

theory was one of the great triumphs of classical mechanics. It was

capable of explaining a wide variety of experimental observations.

But early in the twentieth century, new experiments were causing

problems for the classical wave picture of light. One experiment in

particular, along with its explanation, showed a fundamental prob-

lem with the seemingly indestructible wave theory of light.

THE PHOTOELECTRIC EFFECT

The experiment is the observation of the photoelectric effect. In the

photoelectric effect, light shines on a metal surface and, under the

right conditions, electrons fly out of the metal. For our purposes

here, electrons are electrically charged particles. The electron charge

is negative. (Later we will see that electrons are not strictly particles

for the same reason that light is not a wave.) Because electrons are

charged particles, they are easy to detect. They can produce electrical

36
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signals in detection equipment. Figure 4.1 shows a schematic of the

photoelectric effect with the incoming light viewed as a wave.

It is possible to measure the number of electrons that come

out of the metal and their speed. For a particular metal and a given

color of light, say blue, it is found that the electrons come out with

a well-defined speed, and that the number of electrons that come

out depends on the intensity of the light. If the intensity of light is
increased, more electrons come out, but each electron has the

same speed, independent of the intensity of the light. If the color

of light is changed to red, the electron speed is slower, and if the

color is made redder and redder, the electrons’ speed is slower and

slower. For red enough light, electrons cease to come out of the

metal.

THE WAVE PICTURE DOESN’T WORK

The problem for classical theory with these observations is that they

are totally inconsistent with a wave picture of light. First, consider

the intensity dependence. In the wave picture, a higher light inten-

sity means that the amplitude of the wave is larger. Anyone who

FIGURE 4.1. The photoelectric effect. Light impinges on a metal, and

electrons (negatively charged particles) are ejected. In the classical pic-

ture, light is a wave, and the interaction of the wave with the electrons

in the metal causes them to fly out.
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has been in ocean waves knows that a small wave hits you gently

and a big wave hits you hard. As illustrated in Figure 4.2, low-inten-

sity light is an electromagnetic wave with small amplitude. Such a

wave should ‘‘hit’’ the electrons rather gently. The electrons should

emerge from the metal with a relatively slow speed. In contrast,

high intensity light has associated with it a large amplitude wave.

This large amplitude wave should ‘‘hit’’ the electrons hard, and elec-

trons should fly away from the metal with a high speed.

To put this more clearly, the light wave has associated with it an

oscillating electric field. The electric field swings from positive to

negative to positive to negative at the frequency of the light. An

electron in the metal will be pulled in one direction when the field

is positive and pushed in the other direction when the electronic

field is negative. Thus, the oscillating electric field throws the elec-

FIGURE 4.2. A wave picture of the intensity dependence of the photoelec-

tric effect. Low-intensity light has a small wave amplitude. Therefore, the

wave should ‘‘hit’’ the electrons gently, and they will come out of the

metal with a low speed. High-intensity light has a large wave amplitude.

The large wave should hit the electrons hard, and the electrons will come

out of the metal with a high speed.

Low Intensity - Small Wave 
Light wave “hits” electron 
gently.  Electrons slow. 

High Intensity - Big Wave 
Light wave “hits” electron 
hard.  Electrons fast. 
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tron back and forth. According to classical theory, if the wave has

large enough amplitude, it will throw the electron right out of the

metal. If the amplitude of the wave is bigger (higher intensity), it

will throw the electron out harder, and the electron should come

out of the metal having a greater speed. However, this is not what

is observed. When the intensity of light is increased, electrons come

out of the metal with the same speed, but more electrons come out.
Furthermore, when the light color is shifted to the red (longer

wavelength), the electrons come out of the metal with a lower speed

no matter how high the intensity is. Even in the wave picture, longer

wavelength light is less energetic, but it should be possible to turn

up the intensity, making a bigger amplitude wave, and therefore

increase the speed of the electrons that fly out of the metal. But,

as with a bluer wavelength, turning up the intensity causes more
electrons to emerge from the metal, but for a given color, they all

come out moving with the same speed.

An additional problem is that when the color is shifted far

enough to the red, the electrons stop coming out. The electrons

have some binding energy to the metal, that is, the negatively

charged electrons are attracted to the positively charged metal atom

nuclei. (Atoms will be discussed in detail beginning in Chapter 9
and metals in Chapter 19.) This binding energy is what keeps the

electrons from flying out of the metal in the absence of light. In the

wave picture, it should always be possible to turn up the intensity

high enough, and therefore make the amplitude of the oscillating

electric field large enough, to overcome the binding energy. If you

are standing in the ocean, a small wave may not knock you off of

your feet, but if the waves get bigger and bigger, eventually they will
be big enough to break the binding of your feet to the ocean floor

and send you flying. But with light, for a red enough color, no mat-

ter how big the wave is, the binding of the electrons to the metal is

not overcome.
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EINSTEIN GIVES THE EXPLANATION

The upshot of these experimental observations is that the wave pic-

ture of light that describes the interference pattern of Figure 3.4 so

well does not properly describe the photoelectric effect. The explana-

tion for the photoelectric effect was given by Einstein in 1905 (Al-

bert Einstein, 1879–1955). Einstein won the Nobel Prize in Physics

in 1921 ‘‘for his services to Theoretical Physics, and especially for

his discovery of the law of the photoelectric effect.’’ It may seem

surprising that Einstein, known for his Theory of Relativity, won

the Nobel Prize for explaining the photoelectric effect, which was an

important step in the transition from classical to quantum theory.

Einstein’s prize demonstrates the importance of the explanation of

the photoelectric effect in modern physics.

Einstein said that light is not composed of waves, but rather of

photons or quanta of light. In the photoelectric effect, a photon acts

like a particle rather than a wave. So Einstein said that a beam of

light is composed of many photons, each of which is a discrete

particle. (As discussed in detail later, these are not particles in the

classical sense of a particle.) As shown in Figure 4.3, one photon

‘‘hits’’ one electron and ejects it from the metal. The process is in

FIGURE 4.3. Einstein described light as composed of discreet quanta of

light ‘‘particles’’ called photons. In the photoelectric effect, one photon

hits one electron and knocks it out of the metal.
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some sense like the cue ball in a game of pool hitting a stationary

ball and sending it across the table. The cue ball hitting the station-

ary ball transfers energy to it in the form of kinetic energy, that is,

energy of motion. The collision causes the cue ball to give up energy

and the target ball to gain energy. A light beam is composed of

many photons, but one photon ejects one electron from the metal.

When the intensity of light is increased, the light beam is com-
posed of more photons. As illustrated in Figure 4.4, more photons

impinging on the metal can hit and eject more electrons from the

metal. Because one photon hits one electron, increasing the inten-

sity of the light beam does not change the speed of the electron that

is ejected. In pool, the speed of a target ball is determined by how

fast the cue ball was moving. Imagine two cue balls were simultane-

ously shot at the same speed at two different target balls. After being
hit, the two target balls would move with the same speed. When

more photons of a particular color hit the metal, more electrons

come out, but all with the same speed. In contrast to the wave pic-

ture, increased intensity does not produce a harder hit on an elec-

tron; increased intensity only produces more photons hitting more

FIGURE 4.4. An increase in the intensity of a light beam corresponds to

the beam being composed of more photons. More photons can hit and

eject more electrons, so an increase in intensity results in more electrons

flying out of the metal.
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electrons. Each photon hits an electron with the same impact

whether there are many or few. Therefore, electrons come out with

the same speed independent of the intensity.

RED LIGHT EJECTS SLOWER
ELECTRONS THAN BLUE LIGHT

To explain why changing the color of the light to red (longer wave-

length, lower energy) caused electrons to be ejected with a lower

speed, Einstein used a formula first presented by Planck (Max Karl

Ernst Ludwig Planck, 1858–1947). Planck first introduced the idea

that energy comes in discreet units, called quanta, while he was

explaining another phenomenon involving light, called black body

radiation. When a piece of metal or other material is heated to a
high temperature it will glow; it is emitting light. If it is quite hot,

it will glow red. An example is the heating element of an electric

stove or space heater when turned to high. As its temperature is

increased, the color shifts toward blue. This is not only true of a

piece of metal but also of stars. Red stars are relatively cool. A yellow

star, such as our own sun, is hotter. A blue star is very hot. In 1900,

classical physics could not explain the amount of light that came
out at each color from a hot object. Planck found the explanation

that still stands today by introducing a new concept, that the elec-

trons in a piece of metal could only ‘‘oscillate’’ at certain discreet

frequencies. The energy steps between these frequencies are called

quanta. Planck won the Nobel Prize in Physics in 1918 ‘‘in recogni-

tion of the services he rendered to the advancement of Physics by

his discovery of energy quanta.’’ Planck’s discovery of energy quanta
led to the name Quantum Mechanics.

In his work, Planck introduced the formula that related the fre-

quency of the electrons to their energy, E � hν, where ν is the

frequency as discussed in Chapter 3, and h is called Planck’s con-

stant. In the equation, h � 6.6 � 10�34 J-s, J is the unit of energy
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Joule, and s is seconds. In the formula, the units of ν are Hz or 1/

s; so h times ν gives the units of energy, J. In his description of

black body radiation, Planck postulated that the energy E could only

change in discreet steps. It could be hν, of 2hν, or 3hν, and so on,

but the energy could not have values between these integer step

changes. The recognition that energy changes in discreet quanta at

the atomic level marked the beginning of quantum mechanics.
Einstein proposed that Planck’s formula also applied to pho-

tons, so that the energy of a photon was determined by its frequency

ν as E � hν. Using this formula, Einstein explained the reason that

red light generates slower electrons than blue light. Red light is

lower frequency than blue light. Therefore a red photon is lower

energy than a blue photon. In the pool ball analogy, a blue photon

hits the electron harder than a red photon, and therefore, the blue
photon produces an electron that has a higher speed than a red

photon. With this picture, it is clear why using redder and redder

light produces slower and slower electrons emerging from the

metal.

VERY RED LIGHT DOES NOT
EJECT ELECTRONS

The one observation left to explain is why do the electrons stop

coming out of the metal when the light is tuned far enough to the

red? Einstein resolved this as well. When an electron is ejected from

a metal by a photon, it has a certain kinetic energy. Kinetic energy

means the energy associated with its motion. The higher the en-
ergy, the faster the electron moves. The kinetic energy is Ek where

the subscript k stands for kinetic. The formula for kinetic energy is

given by Ek �
1
2
mV2, where m is the mass and V is the velocity.

Then the velocity of an electron that emerges from a metal is related

to its energy, which in turn is related to the energy of the photon
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that knocked it out of the metal. A higher energy photon will give

the electron more kinetic energy, and the electron will move faster

(have a larger V). As mentioned, electrons are held in a metal by a

binding energy, call it Eb, where the subscript b stands for binding.

Therefore, some of the energy that is carried by the photon has to

go into overcoming the binding energy. The kinetic energy of the

electron that comes out of the metal is just the photon energy, E �

hν, minus the binding energy, Eb. Thus, the electron’s kinetic en-

ergy is Ek � hν�Eb. For an electron to be ejected from the metal,

the photon energy hν must be larger than the binding energy Eb. As

the light is tuned further and further to the red (longer wavelength,

λ), ν becomes smaller and smaller because ν � c/λ, where c is the

speed of light. At some red enough color, hν is less than Eb, and

electrons are no longer ejected from the metal. Turning up the in-
tensity causes more photons to impinge on the metal, but none of

these photons has enough energy to eject an electron.

The fact that electrons stop coming out of the metal when the

photon is tuned far enough to red (has low enough energy) can be

understood by thinking of the child’s game, Red Rover. In Red

Rover, a line of kids stands across a field holding hands. A kid on

the other team runs at the line. If he runs very fast (high energy),
he breaks through the line and keeps going, although he is slowed

down. If he runs somewhat slower, he will still break through the

line. However, if he runs slow enough, he will not break through

the line because his energy is insufficient to overcome the binding

energy of the hands holding the line together.

HOW FAST IS AN EJECTED ELECTRON

It is interesting to get a feel for how fast an electron moves when it

is ejected from a piece of metal. Different metals have different

binding energies called work functions. A binding energy for a

metal can be determined by tuning the color redder and redder
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and seeing the wavelength of light at which photons cannot eject

electrons. For a metal with a small binding energy, a typical cutoff

wavelength for electron ejection is 800 nm. For λ � 800 nm, ν �

3.75 � 1014 Hz, and Eb � hν � 2.48 � 10�19 J. If we shine green

light on the metal with a wavelength of 525 nm, the energy of the

photon is 3.77 � 10�19 J. The kinetic energy of the electron that will

be ejected from the metal is Ek � hν�Eb � 1.30 � 10�19 J. We can

find out how fast the electron is moving using Ek �
1
2
meV2 � 1.30

� 10�19 J, where me is the electron mass, me � 9.11 � 10�31 kg

(kg is kilograms, that is, 1000 grams). Multiplying the equation for

Ek by 2 and dividing by me gives V2 � 2(1.30 � 10�19 J)/me � (2.60

� 10�19 J)/(9.11 � 10�31 kg) � 2.85 � 1011 m2/s2. This value is the

square of the velocity. Taking the square root, V � 5.34 � 105 m/

s, which is about one million miles per hour. In this example of the
photoelectric effect, the ejected electrons are really moving.

Classical electromagnetic theory describing light as waves

seems to work perfectly in describing a vast array of phenomena

including interference, but it can’t come close to explaining the pho-

toelectric effect. Einstein explains the photoelectric effect, but now

light can’t be waves, so what happens to the classical description of

interference? Reconciling the photoelectric effect and interference
brings us to the cusp of quantum theory and back to Schrödinger’s

Cats.


