HSSP: Relativity Syllabus

Tucker Chan

May 25, 2011

This syllabus is tentative, especially the last lecture.

- 1. Review: Classical Mechanics and Matrices
 - Newton's Laws
 - Conservation of momentum and energy for non-interacting and interacting systems
 - Galilean transform and reference frames
 - Matrices: vector spaces, matrix multiplication, etc.
- 2. Foundations of Relativity: The Lorentz transformation
 - Reference Frames
 - Derivation of the Lorentz transformation
 - Invariant interval (timelike, spacelike, lightlike intervals)
 - Low velocity limit
- 3. Properties of the Lorentz Transformation
 - Length contraction
 - Time dilation
 - Velocity addition
 - Simultaneity
 - Doppler shift
- 4. Spacetime Diagrams and Relativistic Paradoxes

- Spacetime diagrams (with a focus on how to change frames)
- Another look at length contraction, time dilation, etc.
- Using spacetime diagrams to interpret the pole-in-barn paradox and twin paradox
- 5. 4-vector formulation
 - 4-vectors
 - Invariant inner product
 - Proper time and 4-velocity
 - 4-acceleration
- 6. Relativistic Dynamics
 - Covariant equations
 - 4-Force = $m \cdot 4$ -acceleration
 - Energy, momentum, and mass
 - Massless particles
 - Conservation laws
- 7. Beyond Relativity: Accelerating Reference Frames and Curved Space (Subject to change)
 - Physics in an accelerating frame
 - Gravity and acceleration
 - General relativity and the curvature of space