Vectors and Beyond: Day 2 Notes

Andrew Geng

HSSP Spring 2009

1 In-Class Problems

- 1. What is the set of all vectors whose dot product with (2, 2, 1) is 9?
- 2. What is the set of all vectors whose cross product with (1,0,0) has magnitude 1?

2 Notes

2.1 Column Vector Notation

At first this is nothing but a notation convention. From now on we'll represent vectors as vertical arrays of numbers, such as:

$$\left[\begin{array}{c} x\\ y\\ z\end{array}\right]$$

2.2 Products of Vectors

The in-class problems led naturally to the equation of a plane, one of the first applications we've seen of the dot product:

$$\mathbf{v} \cdot \mathbf{r} = c$$

...where:

• **v** is a vector perpendicular to the plane

• **r** is the column vector $\begin{bmatrix} x \\ y \\ z \end{bmatrix}$ containing our variables

• c is some constant that controls how far away the plane is from the origin

2.3 Matrices

An $m \times n$ matrix is written as a grid of numbers with m rows and n columns. We focused initially on 2×2 matrices, thinking of them as *linear transfor-mations*. That is, we can multiply a vector \mathbf{v} by a matrix A, and we'll get back another vector. If we have two vectors \mathbf{u} and \mathbf{v} , then the following holds:

$$A(\mathbf{u} + \mathbf{v}) = A\mathbf{u} + A\mathbf{v}$$