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Classification: Computational complexity

Abstract. The problem of testing membership in the subset of the natural numbers
produced at the output gate of a {U,N,” ,+, x} combinational circuit is shown to cap-
ture a wide range of complexity classes. Although the general problem remains open,
the case {U, N, +, x} is shown NEXPTIME-complete, the cases {U,N,” , x}, {U,N, x},
{U,N,+} are shown PSPACE-complete, the case {U,+} is shown NP-complete, the
case {N,+} is shown C—L-complete, and several other cases are resolved. Interest-
ing auxiliary problems are used, such as testing nonemptyness for union-intersection-
concatenation circuits, and expressing each integer, drawn from a set given as input, as
powers of relatively prime integers of one’s choosing. Our results extend in nontrivial
ways past work by Stockmeyer and Meyer (1973), Wagner (1984) and Yang (2000).

1 Introduction

Combinational circuits permeate complexity theory. Countless lower bounds,
complexity class characterizations, and completeness results involve circuits over
the boolean semiring (see [Vo00] among many others). Circuits and formulas
over more general structures have been studied as well (see for a few examples
[BCGR92, BM95, CMTV98, BMPT97, AIMV98, AADOO]).

In this paper, we study circuits operating on the natural numbers. These
include 0 and are simply called the set N of numbers from now on. Next to the
boolean semiring, the semiring of numbers is certainly the most fundamental, and
two results involving number arithmetic have appeared recently: iterated number
multiplication was finally shown to belong to uniform TC® [He01, ABHO1, CDL)]
and (U, 4, x)-circuit evaluation was shown PSPACE-hard [Ya00].

In the boolean setting, the AND and the OR operations combine to capture
alternation (in, say, simulations of alternating Turing machines by circuits). In
the setting of numbers, perhaps the closest analogs to the AND and the OR



become the N and the U. To make sense, this requires an adjustment: since gates
will now compute sets of numbers, a +-gate and a x-gate having input gates
computing S; € N and Sz C N then compute {a +b : a € S;,b € S2} and
{axb:a€ S,be Sy} respectively.

Another reason to study such circuits over {U,N,+, x} is that they obey
some form of monotonicity condition: if the set S C N carried by an input gate
is replaced by a larger set S’ D S, then the set computed at the output gate of the
circuit can only become larger (never smaller). This is reminescent of monotone
boolean functions (a boolean function is monotone if flipping an input from 0
to 1 can never change the output from 1 to 0), for which significant complexity
bounds are known. How are the circuit and formula evaluation problems over
subsets of {U,N, +, x} related to monotone boolean function complexity?

Here we study the following problem, which we think of as combining number
arithmetic with some form of alternation: given a number b and a {U,N,” , +, X }-
circuit C' with number inputs, does b belong to the set computed by the output
gate of C'? We call this problem MC(U, N, ,+, %), and we call MF(U,N,™ , +, x)
the same problem restricted to formulas. Note that a complement gate ~ applied
to a finite set S C N computes the infinite set N\ S. Hence, in the presence of
complement gates, the brute force strategy which would exhaustively compute
all the sets encountered in the circuit fails. The notation for restricted versions
of these problems, for instance MC(U, +), is self-explanatory (see section 2).

Beyond the results stated above, it was known prior to this work that the
problem MF(U, +) is NP-complete [SM73], that MF(U, N, , +) and MF(U,™ , +)
are PSPACE-complete [SM73], and that MC(U, +) is in PSPACE [Wa84].

Adding results from the present paper, some of whose proofs will be deferred
to the full version of the paper for lack of space, we obtain Table I. We highlight
here some of the interesting results or techniques:

- The problem MC(U,N,+, x) is NEXPTIME-complete. As an intermediate
step, we prove that determining whether a union-intersection-concatenation
circuit over a finite alphabet produces a nonempty set is also NEXPTIME-
complete.

- The problem MC(U,N, x) is PSPACE-complete.

- The problem MC(U, N, x) reduces in polynomial time to MC(U, N, +), which
is thus also PSPACE-complete. This reduction is possible because the fol-
lowing problem is solvable in polynomial time: given any set S of numbers
excluding 0, compute a set T' of pairwise relatively prime numbers and ex-
press each m € S as a product of powers of the numbers in 7.

- The problem MC(U, +) is NP-complete. This is a nontrivial improvement
over the former PSPACE upper bound.

- The problem MC(N, +) is C_L-complete, and so is the problem of testing
whether two MC(+)-circuits are equivalent.

The hardest problem we consider is MC(U,N, ™, +, x). As will be seen, we
do not have an upper bound for this problem and it may well be undecidable.
On the other hand, Table I shows that its various restrictions hit upon a wealth
of complexity classes.



2 Definitions and Known Results

A circuit C = (G, E, g¢) is a finite directed acyclic graph (G, E) with a specified
node g¢, the output gate. The gates with indegree 0 are called the input gates.

We consider different types of arithmetic circuits. Let O C {U,N,”,+, x}.
An O-cireuwit C = (G, E, gc, ) is a circuit (G, E, gc') whose gates have indegree
0, 1, or 2 and are labelled by the function « : G — O UN in the following way:
Every input gate g has a label a(g) € N, every gate g with indegree 1 has the label
a(g) = ~, and every gate g with indegree 2 has a label a(g) € {U,N, +, x}. For
each of its gates g the arithmetic circuit C' computes a set I(g) C N inductively
defined as follows:

- If g is an input gate with label a then I(g) =qer {a}.

- If g is +-gate with pred g1, g> then I(g) =qer {k+m : k € I(g1) Am € I(g2)}.
- If g is x-gate with pred g1, g2 then I(g) =der {k-m : k € I(g1) Am € I(g2)}.
- If g is a U-gate with predecessors g1, g2 then I(g) =ger I(g1) U I(g2).

- If g is a N-gate with predecessors g1, g2 then I(g) =der I(g1) N I(g2).

- If g is a ~-gate with predecessor g1 then I(g) =qer N\ I(g1)-

The set computed by C is I(C) =qer I(g9c). If I(g) = {a} then we also
write I(g) = a. An O-formula is an O-circuit with maximal outdegree 1. For
O C{U,Nn,” ,+, x} the membership problems for O-circuits and O-formulae are

MC(O) =4ef {(C,b) : C is an O-circuit and b € N such that b € I(C)}
and
MF(O) =qer {(F,b) : F is an O-formula and b € N such that b € I(F)}.

For simplicity we write MC(oy,...0,) instead of MC({oy,...0,}), and we
write MF (o1, ...0,) instead of MF({o1,...0.}).

Examples. A circuit PRIMES such that I(PRIMES) is the set of prime num-
bers is obtained by defining the subcircuit GE2 as 0 U1 and defining PRIMES
as GE2 N (GE2 x GE2). This circuit could easily be turned into a formula.
Hence the problem of primality testing easily reduces to MF(U,N,™, x). As
another example, consider the circuit GOLDBACH defined as (GE2 x 2) N
(PRIMES + PRIMES). Then I(GOLDBACH) is empty iff every even number
greater than 2 is expressible as a sum of two primes. Hence Goldbach’s conjecture
holds iff “0 € 0 x GOLDBACH?” is a positive instance of MC(U,N,™ , +, X).

If not otherwise stated, the hardness results in this paper are in terms of
many-one logspace reducibility. We assume any circuit and formula encoding in
which the gates are sorted topologically and in which immediate predecessors
are readily available (say in ACO). Viewed as graphs, circuits and formulas are
not necessarily connected. Numbers are encoded in binary notation.

The following results are known from the literature:

Theorem 1 1. [SM73] The problem MF (U, +) is NP-complete.

2. [SM73] The problems MF(U,N,”,+) and MF(U,”, +) are PSPACE-complete.
3. [Wa84] The problem MC(U, +) is in PSPACE.

4. [Ya00] The problem MC(U,+, x) is PSPACE-complete.



In [Wa84] it is shown that the problem MC(U, +) restricted to (U, +)-circuits
for which every +-gate has at least one input gate as predecessor is NP-complete.
By De Morgan’s laws we have

Proposition 2 For every O C {+, x},

1. MC({U,n,~ YU O) =L, MC({U,~ YU ©) =2 MC({n,” }U O).
2. ME({U,n,~ } UO) =2, MF({U,~ } UO) =2, MF({n,”" } U O).

Hence we can omit MC({U,” } U O), MC({n,” } U O), MF({U,” }U 0), and
MF({n,” } UO) from our exhaustive study.

3 Multiplication versus Addition

In this section we will establish a relationship between the complexity of the
membership problems for (O U {x})-circuits and (O U {+4})-circuits, for O C
{U,N,” }. To this end we need the following problem. Let gcd(a, b) be the great-
est common divisor of the numbers a,b > 1.

Gcd-Free Basis (GFB)
Given: Numbers ay,asz,...,a, > 1.
Compute: Numbers m > 1, q1,...,qm > 2, and eqq, ..., €nm > 0 such that
ged(gi,q5) = 1 for i # j and a; =[]}, ;7 fori=1,...,n.
Despite the fact that factoring may not be possible in polynomial time, the
following is known (see [BS96]):

Proposition 3 Gcd-Free Basis can be computed in polynomial time.

As an auxiliary tool we need the generalized membership problems MC*(0O)
and MF*(O) for arithmetic circuit and formulae, resp., with addition. These
problems deal with elements of N™ U {oo}, for an m > 1 prescribed on input,
where the addition on m-tuples is defined componentwise and a + 00 = co +a =
0o+00 = oo for every a € N". Note that polynomial space many-one reducibility
is understood to be performed by polynomial space computable polynomially
bounded functions.

Lemma 4 1. For O C {U,N}, the problem MC(O U {x}) is polynomial time
many-one reducible to the problem MC*(O U {+1}).
2. For O C {U,Nn}, the problem MF(O U {x}) is polynomial time many-one
reducible to the problem MF*(O U {+}).
3. For O C {U,Nn,™ }, the problem MC(O U {x}) is polynomial space many-one
reducible to the problem MC*(O U {+}).
4. For O C {U,Nn,” }, the problem MF(O U {x}) is polynomial space many-one
reducible to the problem MF*(O U {+}).

Proof. 1. Let O C {U,N}, let C be a (O U {x})-circuit with the input gates
u1,---,us, and let b € N. Observe that the absence of + in C entails that any



number in I(C') is expressible as a monomial in the inputs. Compute in polyno-
mial time (Lemma 3) numbers ¢i,...,¢n > 2 and e11,...,€5m,€1,--,€m > 1
such that ged(gi,q;) = 1 for i # j, a(u;) = [I}2, ¢;" for i =1,...,s such that
a(u;) > 0and b= [T/, ¢’ if b > 0. Let M =qer { H;”Zlq]’-c" i fiyeey fm >0} C
N and let 0 : M U {0} = N™ U {oo} be defined by O’(H;nzl q]’.cj) =def (1, fm)
and ¢0(0) = oo. Obviously, ¢ is a monoid isomorphism between (M U {0}, x)
and (N™ U {oo}, +) where we define co + 0o = 00 + a = a + 0o = oo for every
a € N™. Because M U {0} is closed under x, the set of numbers computed by

any gate in C is included in M U {0}. Furthermore, the following holds for any
[7) Q 51,52 g MU{O}

o(S1 X S3) = 0(S1) + 0(S2),
U(Sl U 52) = U(Sl) U U(Sz),
U(Sl n 52) = U(Sl) n U(Sg).

The reduction therefore consists of converting C' into a (O U {+})-circuit C’
which has the same structure as C' where a x-gate in C' becomes a +-gate in C"
and an input gate u; gets label o(a(u;)). An induction using the three identities
above shows that for all « € M U {0} the following holds: a € I(v) in C &
o(a) € I(v) in C". This concludes the proof because b € M U {0}.

2. Same as above because the construction preserves the circuit structure.

3. and 4. If we have complementation then it is no longer true that ev-
ery number computed within C' has a decomposition into ¢i,...,¢;,. To sal-
vage the above construction, the isomorphism ¢ must therefore be extended
to convey information about N\ M. A slick way to do this is to begin from

the full prime decomposition of the numbers uq,...,us,b and to trade the for-
mer isomorphism for a homomorphism. Indeed let ¢i,..., ¢, exhaust the dis-
tinct prime divisors of uy,...,us,b, and let qi,...,Gm, @m+1, @m+2,... be the

sequence of all primes (in some order). For every number H;’il q;-ij € N\ {0}
define o([]72, q;-ij) =def (d1,...,dm, Y 55, dj), and define o(0) =qer 00. Let

M =gef { H;nzl qu : fi,-oy fm > 0} C N Because the full prime decompo-
sition was used, o is a well-defined monoid homomorphism from (N, x) onto
(N™*1 U {oo}, +), where o(M U {0}) = (N" ®{0}) U {co} (o is one-one on this
part; ® denotes direct product) and o(N\ (M U {0})) = (N ®(N\ {0})).

The reduction then again consists of converting C into a (O U {+})-circuit
C' having the same structure as C' where a x-gate in C' becomes a +-gate in
C' and an input gate u; gets label o(a(u;)). An induction proves that for any
a € Nand any gatevin C,a € I(v) in C < o(a) € I(v) in C'. This implies that
beI(C) & o(b) € I(C'"), completing the proof. The polynomial space is needed
to perform the prime decomposition (if needed, a possibly weaker reducibility,
like a many-one polynomial time reduction with an NP oracle, would suffice).

a

In some cases the generalized membership problems used above are logspace

equivalent to their standard versions:

Lemma 5 Let {U} CO C {U,Nn}.



. MC*(O U {+}) =l MC(O U {+}).
2. MF*(O U {+}) =les MF(O U {+}).

4 NP-Complete Membership Problems

Lemma 6 The problem MF(U,N, +, x) is in NP.

Proof sketch. An NP-algorithm can guess a proof that b € I(F) and can
check that the input gates used in the proof carry the required values. O

The following is a nontrivial improvement over the known PSPACE upper
bound for MC(U, +):

Lemma 7 The problems MC(U,+) and MC(U, x) are in NP.

Proof. Let C be a {U, +}-circuit, and let T be the tree which is the result
of unfolding C' into a tree. A subtree T of T is called computation tree of C' iff

- the output gate of T is in T,
- both predecessors of a +-gate of T" are in T, and
- exactly one predecessor of a U-gate of T is in T'.
Hence T describes one of the many ways to compute a number from I(C).

A gate g in C corresponds to several copies of it in T¢ (and hence also in a
computation tree T of C). Let B¢, 7(g) be the number of copies of g in T'. In the
same way, an edge in C' corresponds to several copies of it in T (and hence also
in a computation tree T' of C). Let B¢ r(e) be the number of copies of e in T

Defining s(C,T) =1t~ Y. a(g)-Berr(9)

input gate g of C

we obtain immediately I(C) = {s(C,T) : T is a computation tree of C'}.

A function f : GU E — N is a wvaluation function of the {U,+}-circuit
C = (G, E, a) if the following holds:

- B(QC) = ]->

- if g is a +-gate with the incoming edges e; and e then 8(g) = B(e1) = B(e2),

- if g is a U-gate with the incoming edges e; and e, then 8(g) = B(e1)+5(e2),

- if g is a gate with the outgoing edges ey, . .. ey then 8(g) = B(e1)+. . +8(ex)-
For a valuation function § of C define s(C, §) =qef > a(g)-B(g).

input gate g of C

See the full paper for the proof of the following two claims:

Claim 1:If T is a computation tree of C' then there exists a valuation function
B of C such that s(C, 3) =s(C,T).

Claim 2: If B is a valuation function of C' then there exists a computation
tree T of C such that s(C,T) =s(C, f).

Then we obtain I(C) = {s(C, ) : 8 is a valuation function of C'}, and hence
a € I(C) & 3B(B is a valuation function of C and s(C, 8) = a). However, the
latter property is in NP. This completes the proof of MC(U, +) € NP. From this,
Lemma 4, and Lemma 5 we obtain MC(U, x) € NP. a

Lemma 8 MF(U,+) and MF(U, x) are NP-hard.



Proof. The NP-hardness of MF(U, +) is known ([SM73], cf. Theorem 1). We
prove in the full paper that 3-SAT <!°¢ MF(U, x). O
As an immediate consequence of the preceding lemmas we obtain:

Theorem 9 The problems MF(U,N, +, x), MF(U,N,+), MF(U,N, x),
MF(U, +, x), MF(U, +), MF(U, x), MC(U, +), and MC(U, x) are NP-complete.

5 PSPACE-Complete Membership Problems

Theorem 10 1. [Ya00] The problem MC(U, +, x) is PSPACE-complete.
2. [SM73] The problem MF(U,N,” , +) is PSPACE-complete.

Lemma 11 The problems MF(U,N,~, x), MC(U,N, x), and MC(U,N,+) are
PSPACE-hard, the latter w.r.t. polytime reducibility.

Proof. A single proof in the full paper shows that the quantified boolean
3-CNF formula problem, which is known to be PSPACE-complete [SM73], is
logspace many-one reducible to the problems MF(U,N,™ , x) and MC(U, N, X).
The hardness of MC(U, N, +) then follows by Lemma 4 and Lemma 5. O

Lemma 12 For every gate g of a generalized (U,N,” ,+)-circuit, if I(g) # 0
then I(g) N ({0,1,...,2l¢H1 ™ U {oo}) # 0.

Lemma 13 The problems MC(U,N,” ,+) and MC(U,N,” , x) are in PSPACE.

Proof. Note that MC(U,N,™ , +) reduces to MC*(U,N,~ ,+) simply by re-
placing every negation gate g with g N 50. To prove Lemma 13, it then suffices
by Lemma 4 to show that MC*(U,N,” ,+) € PSPACE.

For a generalized {U,N,” ,+}-circuit C' and b € N™ U {0}, the idea is to
use alternating polynomial time to guess an (alternating) proof that b € I(C).
A subtlety arises when a +-gate g is encountered and it is guessed that oo is
fed into g by one of its two inputs. Then we seek a witness to the fact that
the other input to g carries a nonempty set. Now how large can such a witness
be? Lemma 12 ensures that if a witness exists at all, then a witness exists of
polynomial length. The details are given in the full paper.

As a direct consequence of the preceding lemmas we obtain:

Theorem 14 The five problems MC(U,N,~ ,+), MC(U,N,+), MC(U,N,™, x),
MC(U,N, x), and MF(U,N,~ , x) are PSPACE-complete, the latter w.r.t. poly-
time reducibility. The problem MF(U,N,~ ,+, x) is PSPACE-hard.

6 Beyond PSPACE

As an auxiliary tool we introduce the following (U, N, -)-circuits which compute
finite sets of words. Such a circuit C' only has gates of indegrees 0 and 2. Every
input gate (i.e., gate of indegree 0) g is labelled with a word from a given alphabet



X and every gate of in degree 2 is labelled with U, N, or - (concatenation). For
each of its gates g, the circuit computes a set I(g) C X* inductively defined
as follows: If g is an input gate with label v then I(g) =qer {v}. If g is an w-
gate (w € {U,N,-}) with predecessors g;, g, then I(g) =qer I(g1) w I(g,). Finally,
I(C) =aqet I(gc) where gc is the output gate of C. A (U, N, -)-circuit C' is called
special if for every gate g of C there exists a k > 0 such that I(g) C X*.
Let NE(U,N,-) be the nonemptyness problem for special (U, N, -)-circuits, i.e.,
NE(U,N, ") =qer {C : C is a special (U,N,+)-circuit such that I(C) # 0}.

Lemma 15 The problem NE(U,N,-) is NEXPTIME-hard.

Proof. A delicate generic reduction is given in the full paper. Care is needed
to recursively construct sets of words capable of ensuring the match between
equal length subwords representing successive machine configurations. O

Theorem 16 The problem MC(U, N, +, x) is NEXPTIME-complete.

Proof. 1. To prove MC(U, N, +, %) is NEXPTIME-hard we show NE(U, N, -)
<loe MC(U,N, +, x). For w € {0,1}* let bin~*(w) be that natural number whose
binary description is w (possibly with leading zeros), and for L C {0,1}* let
bin ! (L) =qer {bin ! (w) : w € L}.

Given a special (U, N, -)-circuit C' such that I(C) C {0,1}* (using a block
encoding this can be assumed without loss of generality) we construct in log-
arithmic space a (U, N, +, x)-circuit C" such that I(C") = bin™'(I(C)). The
circuit C’ basically has the same structure as C: An input gate in C' with label
w becomes an input gate in C' with label bin ! (w), a U-gate in C' becomes a
U-gate in C’, and a N-gate in C' becomes a N-gate in C'. A --gate g in C' with
predecessor g1, g> such that I(g2) C {0,1}* is replaced in C' by a subcircuit
which computes bin ™ (I(g1) - I(g2)) = (2¥ x bin™' (I(g1))) +bin ™" (I(g3)). (Here
it is important that C is a special (U, N, -)-circuit.)

Now, I(C) #0 & I(C") #0 < 0€ ({0} x I(C")).

2. To see that MC(U,N,+, x) is in NEXPTIME, simply unfold a given
(U,N, +, X)-circuit into a (possibly exponentially larger) (U,N,+, x)-formula
and apply the NP-algorithm from Lemma 6. a

Corollary 17 The problem NE(U,N, ") is NEXPTIME-complete.
As an immediate consequence of Theorem 16 we obtain also:

Theorem 18 The problem MC(U,N,™ , +, X) is NEXPTIME-hard.

Remark. Since MC(U,N,” ,+, x) =% MC(U,n,,+, x) these problems
cannot be in NEXPTIME unless NEXPTIME = co-NEXPTIME. In fact, there
is evidence suggesting that MF(U,N,” , +, X) might not be decidable. Indeed,
Christian Glaler in Wiirzburg was the first to observe that there is a simple
{U,N,”, +, x}-formula G (see the examples given in Section 2) having the prop-
erty that (G,0) € MF(U,N,™ , +, x) if and only if Goldbach’s Conjecture is true.
Hence, a decision procedure for MF(U, N, ,+, X) would provide a terminating
algorithm to test Goldbach’s Conjecture; this would be surprising.



7 P-Complete Membership Problems

Theorem 19 The problem MC(+, X) is P-complete.
Theorem 20 The problems MC(U,N) and MC(U,N,™) are P-complete.

Proof. To prove MC(U,N,”) € P, let C be a (U,N,” )-circuit and b € N.
Define S =der U, input gate £ (v)- We prove that (*) for every gate v there are sets

P, N C S such that I(v) = PUN. Then we can compute in polynomial time all
I(v) from the inputs down to the output by storing only the sets P and N.

To see (*) let P, Py, N1, N> C S and observe (P, UN;)U(P,UN;) = (PLUP>)U
(N1 N Na), (PLUN;)N(PyUN>) = (PLNP2)U(P\ N2)U (P2 \ N1))U(Ny U Na),
andPluﬁl:Nl\Pl.

The hardness proof is by showing that the P-complete monotone boolean cir-
cuit value problem can be reduced to MC(U,N). To do so we convert a monotone
boolean circuit C' into a (U,N)-circuit C’ of almost the same structure where
every input gate in C' with boolean value 1 becomes an input gate in C’ with
integer value 1, every input gate in C' with boolean value 0 becomes an N-gate in
C' with two input gates with labels 0 and 1, resp., as predecessors, every V-gate
in C' becomes a U-gate in €', and every A-gate in C' becomes a N-gate in C'.
It is easy to see that v evaluates to 0 in C if and only if I(v) = () in C’, and v
evaluates to 1 in C' if and only if I(v) = {1} in C’. Hence, C evaluates to 1 if
and only if 1 € I(C"). a

8 Circuits with Intersection as the Only Set Operation

Circuits with intersection as the only set operation are special in the sense that
every node computes a singleton or the empty set. Thus these circuits bear some
relationship to circuits of the same type without intersection. For O C {+, x}
define EQ(O) =ger {(C1,Cs) : Cy,Cy are O-circuits such that I(Cy) = I(Cs)}.

Lemma 21 1. MC(N, +) <8 EQ(+)
2. MC(N, +, x) =19 EQ(+, x)

Proof. Note that an empty set computed at any accessible gate of a {N, +, x }-
circuit propagates to the output. The reductions from left to right consist of
progressively bypassing N-gates, creating for each such gate g a pair (Cy,Cy)
of N-free subcircuits corresponding to the inputs to ¢, and rigging in the end
two N-free circuits that are equivalent iff Cy is equivalent to Cj, in all the pairs
created from accessible gates. See the full paper for details. O

For the following we need the complexity classes #L and C_L. For a nonde-
terministic logarithmic space machine M, define ns(x) as the number of accept-
ing paths of M on input z. The class #L precisely consists of these functions
ny. A set Aisin C_L if and only if there exist f € #L and a logarithmic space
computable function g such that z € A & f(z) = g(x) for every z. For a survey
on these and other counting classes see [All97].



Observe that this definition is equivalent to: A set A is in C_L if and only if
there exist f,g € #L such that x € A & f(z) = g(x) for every z.

Theorem 22 MC(N, +), MC(+), and EQ(+) are <!%8-complete for C_L.

Theorem 23 1. The problem MC(N,+, x) is in co-NP. !
2. The problem MC(N,+, x) is P-hard.

Theorem 24 1. The problem MC(N, X) is in P.
2. The problem MC(N, x) is C_L-hard.

Theorem 25 The problem MC(x) is NL-complete.

Proof. Hardness is argued in the full paper. Here we describe a many-one
reduction from MC(x) to the iterated multiplication decision problem IMD =g4e¢
{(a1,...ar,b) s ai,...a,,b € NAT[;_, a; = b} via a function which is logspace
computable with an oracle from NL. Since IMD € L ([CDL], or better yet,
uniform TC® [ABHO1, He01]) we obtain MC(x) € LN, However, LN" = NL.

Let C' be a (x)-circuit and b € N. Let gq,...g, be the input gates of C,
let go be the output gate of C, and let n(C,g,g') be the number of different
paths in C from gate g to gate g'. Obviously, n € #L, and we obtain I(C) =
[Ti—, I(g:)™(©9:9¢), Defining s(i) =der min{n(C, gi, gc), |b|+1} for i = 1,...,r
we obtain

beI(C) & b=TI_, I(g)™ 999 & b=TI_, I(9:)""

< (I(g1),.--,1(g1),---,1(9r),---,1(gr),b) € IMD

~ v ~ v

s(1) s(r)

The latter tuple of numbers is generated as follows: for i = 1,...r and k =
1,...,]b|+1 ask n(C, g;, gc) > k, which are queries to a NL-set [ARZ99]. (This
owes to the fact that only small k, i.e. £k whose values are polynomially bounded
in the length of the input, are considered.) If such a query n(C,g;,9c) > k is
answered in the affirmative, output I(g;), and finally output b. a

9 Further Results

The following results are argued in the full paper:

Theorem 26 The problems MC(U) and MC(N) are NL-complete.

Theorem 27 The problems MF(N, 4+, x) and MF(+, x) are in DLOGCFL.
Theorem 28 The problems MF(U,N,”), MF(U,N), MF(U), MF(N), MF(N, +),
MF(N, x), MF(+) and MF(x) are L-complete under AC°-reducibility.

The L-hardness of the MF problems considered in this section owe to our
choice of formula encoding. At such low complexity levels, a more appropriate
choice is infix notation; then MF(U,N,”) becomes NC'-complete by equivalence
with the Boolean formula value problem [Bu87], and some of the other restric-
tions considered in Theorem 28 drop down into yet smaller classes.

! Christian Glaer, Wiirzburg, recently proved that MC(N, 4+, x) is in co-R.



10 Conclusion

Table I summarizes the known complexity status of the membership problems
for arithmetic circuits over subsets of N. Several open questions are apparent
from the table, most notably that of finding an upper bound (if one exists) on
the complexity of MC(U,N,” , +, X).

We observe that the problems MC(x) and MC(+), complete for NL and for
the C_L respectively, offer an interesting new perspective on these two classes.
If one could reduce MC(+) to MC(x), then it would follow that NL = C_L.

Acknowledgements. We are grateful to Eric Allender helping us with the
upper bound in Theorem 25, to Heribert Vollmer and Christian Glafler for very
useful discussions, and to the anonymous referees for valuable suggestions, in-
cluding the need to correct our choice of formula encoding and to clarify its
ramifications.

(@] 10v1\>(/3[rc Igg)l}nd upll)vércgg&nd Th. lovl\\;I.P}‘o(g)nd upl\I;I.th((?u)nd Th.
U,N,~, +, x| NEXPTIME ? 18 | PSPACE ? 14
u,n, +,x|NEXPTIME | NEXPTIME | 16 NP NP 9
U, +,x| PSPACE PSPACE | 10 NP NP 9
N, +, X P co-R 23 L DLOGCFL| 27

+, X P P 19 L DLOGCFL| 27
u,n,”, + PSPACE PSPACE | 14 | PSPACE | PSPACE | 10
u,n, + PSPACE PSPACE | 14 NP NP 9
U, + NP NP 9 NP NP 9
N, + C_L C_L 22 L L 28

+ C=L C=L 22 L L 28
U,N, =, x PSPACE PSPACE | 14 | PSPACE | PSPACE | 14
U, n, X PSPACE PSPACE | 14 NP NP 9
U, X NP NP 9 NP NP 9
N, X C-L P 24 L L 28

X NL NL 25 L L 28
u,n,” P P 20 L L 28
U,N P P 20 L L 28
U NL NL 26 L L 28
N NL NL 26 L L 28

TABLE I: State of the art. The results on MF(U, +), MF(U,N,”,+) as well
as on MC(U, 4+, x) were already known from the literature, please refer to the
relevant sections for the appropriate credit. Lower bounds of course refer to
hardness results.
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