Definition 1. A group homomorphism is a function $f : G \to H$ that satisfies the following for all $x, y \in G$

$$f(xy) = f(x)f(y).$$

Definition 2. A function $f: G \to H$ is

- injective (or one-to-one) if no two distinct elements $x, y \in G$ satisfy f(x) = f(y).
- surjective (or onto) if for every element $z \in H$, there is some $x \in G$ with f(x) = z.
- **bijective** if it is both injective and surjective

Proposition 3. The following three conditions are equivalent for a function $f: G \to H$:

- f is bijective (i.e. both injective and surjective)
- f has an inverse $f^{-1}: H \to G$
- G and H are both finite and the same size and f is either injective or surjective

Definition 4. An isomorphism of groups is a bijective function $f : G \to H$ that is also a group homomorphism. Two groups are isomorphic if there is some isomorphism between them. This is written as $G \approx H$.

Example 5. Consider the function $f : (\mathbb{R}, +) \to (\mathbb{R}^{\times}, \times)$ defined by $f(x) = 2^x$. This is a homomorphism since $f(x+y) = 2^{x+y} = 2^x 2^y = f(x)f(y)$. It is not an isomorphism since there is no x with f(x) < 0.

Example 6. Let (\mathbb{R}^+, \times) be the group of positive real numbers with the operation of multiplication. This group is isomorphic to $(\mathbb{R}, +)$.

We can use the exact same function as in Example 5. The only difference is this time f is actually a bijection. This is true since $\log_2 : (\mathbb{R}^+, \times) \to (\mathbb{R}, +)$ is its inverse.

Definition 7. Take any two groups G, H. The **product group** $G \times H$ is the group whose elements are in the form (g, h) for $g \in G$ and $h \in H$. Multiplication is defined by

$$(g,h) \cdot (g',h') = (gg',hh').$$

Proposition 8. The product group actually is a group.

Proof. This group has identity $(1_G, 1_H)$ where $1_G \in G$ and $1_H \in H$ are the identities in their respective groups.

For an element $(g, h) \in G \times H$, it has inverse (g^{-1}, h^{-1}) .

Finally, multiplication in the product group is associative since it is in the original groups.

$$((x_1, y_1) \cdot (x_2, y_2)) \cdot (x_3, y_3) = (x_1 x_2, y_1 y_2) \cdot (x_3, y_3)$$

= $((x_1 x_2) x_3, (y_1 y_2) y_3)$
= $(x_1 (x_2 x_3), y_1 (y_2 y_3))$
= $(x_1, y_1) \cdot (x_2 x_3, y_2 y_3)$
= $(x_1, y_1) \cdot ((x_2, y_2) \cdot (x_3, y_3))$

Example 9. The Klein Four Group V_4 is defined to be $\mathbb{Z}_2 \times \mathbb{Z}_2$. It has four elements e = (0,0), a = (1,0), b = (0,1), and c = (1,1). e is the identity and all other elements are their own inverses. Finally ab = c, ac = b, and bc = a.

Theorem 10 (Chinese Remainder Theorem). For m, n relatively prime integers,

$$\mathbb{Z}_m \times \mathbb{Z}_n \approx \mathbb{Z}_{mn}$$

Proof. Define the function $f : \mathbb{Z}_{mn} \to \mathbb{Z}_m \times \mathbb{Z}_n$ that has

$$f(x) = (x \pmod{m}, x \pmod{n}).$$

Note that this is, in fact, a group homomorphism.

Since \mathbb{Z}_{mn} and $\mathbb{Z}_m \times \mathbb{Z}_n$ both have size mn, by Proposition 3, all we need to do is to show that f is either injective or surjective to know that it is a bijection. The fact that f is surjective follows from the number theoretic version of the Chinese Remainder Theorem.

Lemma 11 (Chinese Remainder Theorem). For m, n relatively prime integers and $0 \le a < m$ and $0 \le b < n$, there is some $0 \le x < mn$ that satisfies

$$x \equiv a \pmod{m}$$
$$x \equiv b \pmod{n}$$

Proof. To satisfy the first equation, x has to be somewhere in the list $a, a + m, a + 2m, a + 3m, \dots, a + (n-1)m$. This list has n different numbers on it. We want to show that one of them has to be $b \pmod{n}$. To do this, what we will show is that all the numbers in this list are different (mod n).

What we want to show is that no two numbers in the form a+im and a+jm are the same (mod n), or equivalently that their difference isn't a multiple of n. Thus all we need to show is that for $0 \le i, j < n$ and $i \ne j$, (i - j)m isn't a multiple of n.

There are a couple of ways to show this. One way is to note that the statement n|(i-j)m is equivalent to saying n|(i-j) since m and n are relatively prime. Another way is to see that we want gcd(n, (i-j)m) = n, but $gcd(n, (i-j)m) \le gcd(n, (i-j))gcd(n, m)$, and gcd(n, m) = 1 since they are relatively

prime. In either case, what we get is that n must divide i-j, which is impossible since |i-j| < n and $i \neq j$.

Therefore all the numbers in our list have a different residue \pmod{n} , so one of them must be $b \pmod{n}$, completing our proof.

By Lemma 11, for any $(a,b) \in \mathbb{Z}_m \times \mathbb{Z}_n$, there is some $x \in \mathbb{Z}_{mn}$ with $x \pmod{m} = a$ and $x \pmod{n} = b$ which means exactly that f(x) = (a,b), so our function is surjective and thus a bijection.