Definition 1. A group homomorphism is a function $f: G \to H$ that satisfies the following for all $x, y \in G$

$$
f(xy) = f(x)f(y).
$$

Definition 2. A function $f: G \to H$ is

- injective (or one-to-one) if no two distinct elements $x, y \in G$ satisfy $f(x) = f(y).$
- surjective (or onto) if for every element $z \in H$, there is some $x \in G$ with $f(x) = z$.
- bijective if it is both injective and surjective

Proposition 3. The following three conditions are equivalent for a function $f: G \to H$:

- f is bijective (i.e. both injective and surjective)
- f has an inverse $f^{-1}: H \to G$
- G and H are both finite and the same size and f is either injective or surjective

Definition 4. An isomorphism of groups is a bijective function $f: G \to H$ that is also a group homomorphism. Two groups are isomorphic if there is some isomorphism between them. This is written as $G \approx H$.

Example 5. Consider the function $f : (\mathbb{R}, +) \to (\mathbb{R}^\times, \times)$ defined by $f(x) = 2^x$. This is a homomorphism since $f(x+y) = 2^{x+y} = 2^x 2^y = f(x)f(y)$. It is not an isomorphism since there is no x with $f(x) < 0$.

Example 6. Let (\mathbb{R}^+, \times) be the group of positive real numbers with the operation of multiplication. This group is isomorphic to $(\mathbb{R}, +)$.

We can use the exact same function as in Example 5. The only difference is this time f is actually a bijection. This is true since $\log_2 : (\mathbb{R}^+, \times) \to (\mathbb{R}, +)$ is its inverse.

Definition 7. Take any two groups G, H . The **product group** $G \times H$ is the group whose elements are in the form (g, h) for $g \in G$ and $h \in H$. Multiplication is defined by

$$
(g, h) \cdot (g', h') = (gg', hh').
$$

Proposition 8. The product group actually is a group.

Proof. This group has identity $(1_G, 1_H)$ where $1_G \in G$ and $1_H \in H$ are the identities in their respective groups.

For an element $(g, h) \in G \times H$, it has inverse (g^{-1}, h^{-1}) .

Finally, multiplication in the product group is associative since it is in the original groups.

$$
((x_1, y_1) \cdot (x_2, y_2)) \cdot (x_3, y_3) = (x_1x_2, y_1y_2) \cdot (x_3, y_3)
$$

$$
= ((x_1x_2)x_3, (y_1y_2)y_3)
$$

$$
= (x_1(x_2x_3), y_1(y_2y_3))
$$

$$
= (x_1, y_1) \cdot (x_2x_3, y_2y_3)
$$

$$
= (x_1, y_1) \cdot ((x_2, y_2) \cdot (x_3, y_3))
$$

Example 9. The Klein Four Group V_4 is defined to be $\mathbb{Z}_2 \times \mathbb{Z}_2$. It has four elements $e = (0, 0), a = (1, 0), b = (0, 1),$ and $c = (1, 1).$ e is the identity and all other elements are their own inverses. Finally $ab = c$, $ac = b$, and $bc = a$.

Theorem 10 (Chinese Remainder Theorem). For m, n relatively prime integers,

$$
\mathbb{Z}_m\times\mathbb{Z}_n\approx\mathbb{Z}_{mn}
$$

Proof. Define the function $f : \mathbb{Z}_{mn} \to \mathbb{Z}_m \times \mathbb{Z}_n$ that has

$$
f(x) = (x \pmod{m}, x \pmod{n}).
$$

Note that this is, in fact, a group homomorphism.

Since \mathbb{Z}_{mn} and $\mathbb{Z}_m \times \mathbb{Z}_n$ both have size mn , by Proposition 3, all we need to do is to show that f is either injective or surjective to know that it is a bijection. The fact that f is surjective follows from the number theoretic version of the Chinese Remainder Theorem.

Lemma 11 (Chinese Remainder Theorem). For m, n relatively prime integers and $0 \le a < m$ and $0 \le b < n$, there is some $0 \le x < mn$ that satisfies

$$
x \equiv a \pmod{m}
$$

$$
x \equiv b \pmod{n}
$$

Proof. To satisfy the first equation, x has to be somewhere in the list $a, a +$ $m, a + 2m, a + 3m, \dots, a + (n-1)m$. This list has n different numbers on it. We want to show that one of them has to be b (mod n). To do this, what we will show is that all the numbers in this list are different (mod n).

What we want to show is that no two numbers in the form $a+im$ and $a+jm$ are the same $(mod n)$, or equivalently that their difference isn't a multiple of n. Thus all we need to show is that for $0 \leq i, j < n$ and $i \neq j, (i - j)m$ isn't a multiple of n.

There are a couple of ways to show this. One way is to note that the statement $n|(i-j)m$ is equivalent to saying $n|(i-j)$ since m and n are relatively prime. Another way is to see that we want $gcd(n,(i-j)m) = n$, but $gcd(n,(i-j)m)$ $j(m) \leq \gcd(n,(i-j)) \gcd(n,m)$, and $\gcd(n,m) = 1$ since they are relatively

 \Box

prime. In either case, what we get is that n must divide $i-j$, which is impossible since $|i - j| < n$ and $i \neq j$.

Therefore all the numbers in our list have a different residue $p(mod n)$, so one of them must be $b \pmod{n}$, completing our proof. \Box

By Lemma 11, for any $(a, b) \in \mathbb{Z}_m \times \mathbb{Z}_n$, there is some $x \in \mathbb{Z}_{mn}$ with x (mod m) = a and x (mod n) = b which means exactly that $f(x) = (a, b)$, so our function is surjective and thus a bijection. \Box