Slinky whistlers
Frank S. Crawford

Citation: American Journal of Physics 55, 130 (1987); doi: 10.1119/1.15229
View online: https://doi.org/10.1119/1.15229

View Table of Contents: https://aapt.scitation.org/toc/ajp/55/2

Published by the American Association of Physics Teachers

ARTICLES YOU MAY BE INTERESTED IN

Slinky-whistler dispersion relation from “scaling”
American Journal of Physics 58, 916 (1990); https://doi.org/10.1119/1.16299

Erratum: “Slinky whistlers” [Am. J. Phys. 55, 130 (1987)]
American Journal of Physics 55, 952 (1987); https://doi.org/10.1119/1.15325

Pulse compression: Dechirping of time-reversed slinky whistlers
American Journal of Physics 59, 1050 (1991); https://doi.org/10.1119/1.16649

Modeling a falling slinky
American Journal of Physics 80, 1051 (2012); https://doi.org/10.1119/1.4750489

Longitudinal standing waves on a vertically suspended slinky
American Journal of Physics 61, 353 (1993); https://doi.org/10.1119/1.17270

A simple model of a Slinky walking down stairs
American Journal of Physics 78, 35 (2010); https://doi.org/10.1119/1.3225921

AAPT.

PHYS|CS EDUCATION

Advance your teaching and career
as a member of AAPT

LEARN MORE



https://images.scitation.org/redirect.spark?MID=176720&plid=1225648&setID=405125&channelID=0&CID=414014&banID=519951233&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=a751578570f9a19485c32a00914fe23468df85a9&location=
https://aapt.scitation.org/author/Crawford%2C+Frank+S
/loi/ajp
https://doi.org/10.1119/1.15229
https://aapt.scitation.org/toc/ajp/55/2
https://aapt.scitation.org/publisher/
https://aapt.scitation.org/doi/10.1119/1.16299
https://doi.org/10.1119/1.16299
https://aapt.scitation.org/doi/10.1119/1.15325
https://doi.org/10.1119/1.15325
https://aapt.scitation.org/doi/10.1119/1.16649
https://doi.org/10.1119/1.16649
https://aapt.scitation.org/doi/10.1119/1.4750489
https://doi.org/10.1119/1.4750489
https://aapt.scitation.org/doi/10.1119/1.17270
https://doi.org/10.1119/1.17270
https://aapt.scitation.org/doi/10.1119/1.3225921
https://doi.org/10.1119/1.3225921

Slinky whistlers
Frank S. Crawford

Physics Department and Lawrence Berkeley Laboratory, University of California, Berkeley, California

94720

(Received 15 January 1986; accepted for publication 21 March 1986)

Delightful sounds, produced in simple experiments, agree with an elementary theoretical

analysis.

INTRODUCTORY EXPERIMENTS

Get a slinky.' Use tape or staples to fasten one end, the
output end, flat against a wall (or door or window), to
serve as a sounding board. Hold the other (input) end in
your hand and stand about ten feet from the wall, far
enough so that the slinky is suspended with neighboring
turns not in contact with one another, but close enough to
one another so that there is still negligible tension in the
coiled spring. Now tap the input end with a pencil and
listen. Radiating from the output at the wall you will hear a
“whistler,” a sound that first becomes audible as a very
high pitch and then quickly descends in pitch, becoming
inaudible in a fraction of a second. Evidently, the high fre-
quency components of the “delta function” excited by the
pencil tap propagate down the slinky delay line more rapid-
ly than do the low frequency components.?

Try standing farther from the wall, increasing your dis-
tance to it by about a factor of 2. This will put some tension
in the slinky. However, the whistler sound (frequency ver-
sus delay time) coming from the wall does not change.
Now increase the distance again, so that the spring is ac-
quiring some tension. The sound is still unchanged. (With
one slinky I walked nearly 100 ft from the wall, completely
ruining the slinky as I stretched and unwound it irrevers-
ibly; nevertheless, the whistlers recorded on my tape re-
corder at the wall did not change appreciably during the
process.) Thus the spring tension has very little to do with
the whistler we hear.

Next, shorten the slinky delay line by a factor of 2 by
gathering in half of the turns at the input end and holding
them in your hand. The whistler becomes more rapid, its
delay before audible onset and its duration both decreasing
by a factor of 2. Continue shortening the delay line by a
factor of 2 each time. The whistler becomes shorter and
shorter until, with only a few turns left, it becomes a non-
dispersed “click.”

Now return to the full length, but instead of holding the
input end in your hand (which acts as an absorbing termi-
nation for reflected waves) hang the input on a nail on the
wall opposite the sounding board. For a single input tap
you will now hear several repeated whistlers, each weaker
than the previous one, and with a larger dispersion (larger
time duration), as the wave packet reflects back and forth
from one end to the other. (This is analgous to the iono-
spheric whistlers of Refs 2 and 3.)

THERE ARE TWO WHISTLER MODES

Next (holding the input end in your hand again, so as to
damp reflections) notice that there are two different ways
you can excite the slinky so as to produce two distinctly
different-sounding whistlers. If you tap the slinky in the
radial direction, so that the pencil tends to bend the wide
transverse dimension of the slinky wire, you hear a “fast”
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whistler. If instead you tap along the helix axis (by insert-
ing the pencil between two adjacent turns before you tap)
so as to bend the thin dimension, you hear a “slow” whis-
tler. To my ear the ratio of time durations of these two
whistler modes is about a factor of 2. To check this hypoth-
esis, I first excite the fast whistler (by tapping the wide
dimension in the radial direction}, using the full N-turn
delay line. Then I gather N/2 of the turns into my hand (so
that the remainder gives a delay line half as long) and ex-
cite the slow whistler (with a longitudinal tap along the
thin dimension). My ear cannot distinguish between these
two whistlers. To the extent that they are indeed identical,
there really is a factor of 2 in timeé duration (for the same
slinky length). Since the ratio &,/d, is 4.1, which we can
call 4, we conclude that any successful slinky-whistler the-
ory must predict a sound velocity iri the slinky that goes as
the square root of the thickness of the transverse dimension
d that gets bent by the wave.

THEORY

Weneed a theory that can be compared with experiment.
The simplest possibility is that the whistler we hear is not
influenced by the fact that the wire is wound in a spiral.
(That hypothesis is supported by the *“ruined slinky” ex-
periment mentioned above.) We therefore assume the
whistler is simply due to transverse traveling waves in a
stiff long straight rectangular steel bar under no tension,
having cross-sectional dimensions d; and d, and length L,
with the numerical values given in Ref. 1. The dispersion
relation between frequency f= w/27 and wavelength
A =2m/k for transverse waves in such a bar is given (See
Appendix I or Ref. 5.) by

w =k ’cr, (n

where r =d /(12) ‘( 2, d is the bar thickness in that trans-
verse dimension which is being deformed by the wave, r is
the radius of gyration for rotation of a thin transverse slice
of wire about an axis lying in the plane of the slice perpen-
dicular to dimension d and passing through the center of
the slice, and ¢ = (Y /p) '~ is the velocity of the nondisper-
sive longitudinal (compressional) sound waves in the bar,
which is made of material having Young’s modulus Y and
density p. Then the wave velocity v = w/k and group veloc-
ity v, = dw/dk are given by

v=w/k = ker = [wer]'?, v, =2v. 2)

PREDICTIONS OF THE THEORY

Notice that Eq. (2) satisfies the experimental result
found above, that the sound velocity is proportional tod '/2.
Good! Also, the higher frequencies travel faster than the
lower, as observed. Good!

The time delay ¢ between the delta function excitation at

© 1987 American Association of Physics Teachers 130



your hand at time zero and the arrival of a wave packet of
dominant frequency f at the sounding board, a distance L
along the wire from your hand, is given by ¢ = L /v, (not
L /v). Taking handbook values of Y and p for steel gives
¢ = 5.08X10° cm/s. For my slinky, with L = 2180 cm,
Eq. (2) then gives

t=L /v, = 1.14/f'?, (3)

with tins, fin H, and d in cm. For the fast whistler we take
d=d;=0.262 cm. For the slow whistler d =d, = (1/
4)d,, as given above.!

COMPUTER SIMULATION EXPERIMENT

In order to compare Eq. (3) with what I hear, I pro-
grammed my Macintosh to emit a sound of frequency fas a
function of delay time ¢ as given by Eq. (3), withd =d, or
d,, and with ¢ starting, not at zero, but at an initial time 7,
such that Eq. (3) gives an initial frequency f, = 20 kHz,
close to the limit of human hearing; each successive value
of fis emitted for a duration of 1/60s. To my ear the sound
of the Mac whistler matches very well the sound of either
the slow or the fast slinky whistler from my wall sounding
board. This is especially true if I cut off the Mac sound after
about 0.25 s, thus cutting off the low frequency tail of the
whistler. Part of the reason for the absence of low frequen-
cies emitted by the wall was the poor low frequency cou-
pling of the slinky to the wall, as shown by the fact that by
holding my end of the slinky very close to my ear I could
hear a much longer whistler (longer than the expected
twice-as-long duration due to the replacement of L by the
down-and-back distance 2L ), which descended to much
lower frequencies than those heard coming from the wall.
They sounded like Mac whistlers with a 1 s cutoff.

MORE REAL EXPERIMENTS

Encouraged by the good match between the Mac whis-
tlers and the real slinky whistlers, I set up an oscilloscope at
home, with two microphones, the first attached to the
slinky at its input end, where it could pick up the delta
function so as to trigger the scope, the second at the output
end, to pick up and display the dispersed delta function—
the whistler. I stapled the output end of the slinky to the
wooden wall of my dining room, and supported the input
end with a hook screwed into the opposite wall. I also re-
placed my hand by a large glob of “duct seal” wrapped
around the first few turns at the input end, so as to absorb
most of the wave reflected back from the wall.

The first observations with the oscilloscope confirmed
what my ear had heard, namely that there are two modes
differing by a factor of 2 in velocity. This was easily seen on
the oscilloscope because of the unexpected peculiarity that
each of the modes appeared to have both a high and a low
frequency cutoff, which gives corresponding early and late
delay time cutoffs, according to Eq. (3). Thus the fast
whistler, excited by tapping in the radial (wide) direction,
was mostly contained between time delay ¢ = 0.015 and
0.035 s, with maximum amplitude near 0.030 s, whereas
the slow whistler, excited by tapping in the longitudinal
(thin) direction, had maximum amplitude near ¢ = 0.060
s and was mostly contained between ¢ = 0.050 and 0.090 s.
Thus, surprisingly, there was very little overlap in delay
times of the two whistler modes. [ No such cutoffs or sepa-
rations in time are predicted by Eq. (3).] With practice in
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tapping it was possible to excite the fast whistler mode with
very little of the slow, as indicated on the scope by the time
durations just mentioned, and by my ear, and to excite the
slow mode without too much of the fast.

In order to test Eq. (3) I operated the oscilloscope such
that the signal from microphone no. 2 (at the wall) was
displayed in a magnified “time window,” of total length 1
ms (100 us/division) which could be delayed by a variable
amount ¢ after the scope trigger at time zero provided by
microphone no. 1 at the input end. I used a Polaroid Land
camera to record the oscilloscope trace from the micro-
phone no. 2 in the time window, so as to measure the aver-
age periods of a few cycles and hence measure the oscilla-
tion frequency f of the dominant Fourier component at
delay ¢. With the delay set at ¢ = 0.015 s, Eq. (3) predicts

S =22 kHz for the fast whistler, and 88 kHz for the slow.
When I excited the fast whistler I found a fairly pure sine
wave in the window, with /= 22 kHz within 10% accura-
cy. The theory works! When I excited the slow whistler I
also found 22 kHz in the window, but with much smaller
amplitude. Thus no matter how I excited the slinky I found
only 22 kHz, the expected fast whistler frequency at this
delay. Thus we have good agreement with the theory, ex-
cept that the theory expects both modes to be present at all
times. Why do I not see the expected 88 kHz signal at
t = 0.015 s, even when I tap longitudinally? It could be
because of poor coupling to the wall, or poor response of
the microphone. Of course, its absence in the delayed mag-
nified window also corresponds to what I see with normal
triggering (for which I can see the whistler amplitudes but
cannot read their frequencies because I am then using a
slow sweep with 10 ms per scope division)—namely, very
little of the slow whistler appears before t = 50 ms delay.
Incidentally, the fine agreement between theory and exper-
iment for the fast whistler mode proves that it is indeed the
group velocity, not the wave velocity, that goes into Eq.
(3). (Did you doubt it? If so, you are in good company.)

With the window delay set at = 0.030 ms the predicted
values are /= 55 kHz for the fast whistler and 22 kHz for
the slow. For either excitation method I found 5.0 kHz,
with a much larger amplitude when I tapped radially to
excite the fast mode. Frequency f= 5.0 kHz corresponds
to the fast whistler (d =0.262) with delay ¢ = 31.3 ms,
according to Eq. (3).That is in good agreement with my
measured setting of ¢ = 0.030 s, since I determine this win-
dow delay by reading the location of an intensified beam
spot on the slow scale of 10 ms per scope division, and I can
only read this to 4+ ms. So again I get beautiful agreement
with Eq. (3) for the fast whistler. But again I see no hint of
the expected 22 kHz slow whistler signal, even when I tap
longitudinally.

With the 1 ms window delay set at £ = 55 + 1 ms, Eq,
(3) predicts f = 1.6 kHz for the fast whistler mode and 6.5
kHz for the slow. When I excited the slow mode I measured
6.3 kHz in the window, which corresponds to ¢ = 0.056 s
for the slow whistler, according to Eq. (3). So now I have
beautiful agreement with the slow whistler! They both agree
with Eq. (3)! But I could see no signal at 1.6 kHz when I
tried to excite the fast whistler. Thus I get good agreement
with the slow whistler and no hint of the fast, at = 55 ms.
Of course, these were simple “eyeball” frequency measure-
ments, made by counting three or four of the dominant
nearly sinusoidal oscillations, on a Land photograph of the
scope trace in the delayed window. Small admixtures of
other Fourier components could not be found in this way.
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SPECULATIONS AND LOOSE ENDS

Why do we get such good agreement between Eq. (3)
and both whistler modes? Is it reasonable for these trans-
verse waves not to “notice” that they are “going in circles”
on a helical slinky, rather than traveling along a straight
bar as the theory assumes? One turn of the slinky helix has
length 23 cm. If a given frequency f has a wavelength
A =wv/f (not v, /f) that is much smaller than 23 cm it
would seem reasonable for the wave not to notice. Now, the
longest times where I saw significant amounts of the fast
whistler on the scope were at ¢,,,,, ~40 ms, corresponding,
accordng to Eq. (3), to f,,;, ~ 3.1 kHz, and therefore to
Anax = V/fmin ~9 cm. The corresponding quantities for
the slow whistler were tax ~ 90 ms, fmin ~ 2.4 kHz, and
Amax ~ 35 cm. Both of these values of 4,,,, are sufficiently
small compared with 23 cm that it seems reasonable that
the waves not notice the helical path. That, I believe, is why
we can get such good agreement with Eq. (3), for the ob-
served wavelengths, which are all less than these A, . Is it
then the “noticing they are going in circles” that is the
cause of the observed long wavelength cutoffs? I do not
think so. Instead, I believe the cutoffs are simply due to
poor coupling of the slinky to the microphone, as observed
above when I put the slinky close to my ear. It would be
worthwhile to improve this coupling so as to see if the beau-
tiful agreement between Eq. (3) and experiment continues
to hold at lower frequenceis, where 4 approaches or ex-
ceeds 23 cm. (But the analysis would become less simple if
the present fortuitous “decoupling in time” between the
two modes were lost. With both modes present at all times,
one would have to do “honest” Fourier analysis, instead of
simply counting sine waves on a Land photograph as I did.
We leave this for the student.)

What is the source of the observed high frequency
cutoffs? For the fast whistler I see on the scope ¢,,;, ~0.015
8 giving ., ~22kHzand A ;, ~ 3.3 cm; for the slow whis-
tler I see t,,;, ~0.050 s giving /... ~8 kHz and 4,;,, ~2.8
cm. The fact that these two A ,,,;, are nearly equal, whereas
the corresponding £, are not, suggests that this cutoff is
really due to a length, not a time. One possibility may be
due to the fact that the input deformation caused by the
pencil tap is not a delta function but perhaps has an effec-
tive extent of about 3 cm. That is plausible because of the
fact that the helix radius of 3.6 cm is suspiciously close to
these values of A ,,,;,, . Other suspects are the coupling of the
slinky to the microphone via the wall, and the response of
the microphone. Use of a less primitive coupling of the
microphone and slinky (perhaps by cementing the slinky
to the moveable element of an audio loudspeaker) and ex-
ploration of the low and high frequency cutoffs would be
intersting student projects. Are the cutoffs real, or are they
the result of the crudeness of my technique? Do the whis-
tlers propagate for wavelengths greatly in excess of 23 cm?
For what wavelengths does Eq. (3) break down? We leave
these loose ends as exercises for the student.

de BROGLIE WHISTLERS

Finally, it is intersting to note that the slinky dispersion
relation Eq. (1), @ = Ak 2, with A a constant, has the same
form as the dispersion relation for de Broglie waves asso-
ciated with a nonrelativistic free particle, where we have
E = p?/2m, E = #iw, p = #ik, and therefore @ = 4k 2, with
A = #/2m. Just as for slinky whistlers, the group velocity
(particle velocity) of a de Broglie wave packet is twice the
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phase velocity. However, the phase velocity w/k of a de
Broglie wave is a rather nebulous quantity: It is unobserva-
ble, since @ can be changed tow + w, = @ + V,/#, withno
physical consequences, by simply adding a constant poten-
tial energy ¥, (at all locations) to the energy E. By con-
trast, for slinky whistlers @ is a very physical quantity. You
can hear it.

APPENDIX: DERIVATION OF THE DISPERSION
RELATION EQ. (1)

(For an alternative derivation see Ref. 5). Consider a
stiff wire of rectangular cross section, lying along the z axis
at equilibrium, and having transverse dimension 2/ along x.
We think of the wire as made of repeated infinitesimal
modules of length a along z, and width 2/ along x, as shown
in Fig. 1, where we show modules number n — 1, n, and
n+ 1

Module number n extends from z = —a/2 to + a/2
andx = —/ to + /. Each module is built on a rigid mass-
less “cross” with a horizontal arm of length @ along z, and a
vertical leg of height 2/ along x. The vertical leg of each
cross has a mass m at each end, at distances x = + / from
the Z axis. (Later we will add more masses, distributed
uniformly fromx = — / to + /.) The masses on neighbor-
ing modules are connected by horizontal springs of length a
and spring constant K, that are neither compressed nor
extended, at equilibrium. The ends of the horizontal arms
of neighboring modules are joined by frictionless slotted
hinges, (shown as hollow circles in Fig. 1). The slots (not
shown) allow the joined ends to slide freely with respect to
one another in the z directon, but the horizontal springs
oppose such sliding. The hinges allow rotation of the
modules in the z-x plane. The constraint force that prevents
separation along x, at the hinges, is a shearing force S.
When all the modules are at their equilibrium positions,
lined up along the z axis as shown in the Fig. 1, the shear
force S is zero. When S is not zero it is a slowly varying
function of z. When that is the case the modules have slight
bends at the hinges, gradually changing the module angle
with increasing z. The “wavelength” for such changes is
large compared to the module length a. In Fig. 1 we show
the shearing force S as the force in the + x direction on the
right-hand end of the horizontal arm of module #,and S’ as
the force in the + x direction on the right-hand end of the
horizontal arm of module n — 1. (The figure does not show
the slight progressive bending at the hinges that should
accompany the presence of a shear.) Because of Newton’s
third law, the force on the left-hand end of the horizontal
armof modulenis — S'. Thus the net force on module », in
the x direction, is § —.S". (The springs contribute forces
only in the z direction.)

1
b
K m K
15 . t S
ra
1 4
Q
K m K
n-1 n n+1
Z2=-8 2=0 2=8

Fig. 1. Lumped-parameter model of a stiff spring. The length “a” of one
module is small compared with any of the wavelengths involved.
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Let us first consider the simplest motion, where the rela-
tive motion of the modules is entirely along z. Then there is
no shear force S. The force is entirely due to compression or
extension of the horizontal springs. Let , (n,t) be the z
displacement of module 7 from its equilibrium position,
and ¢, (n + 1,¢), that of module n + 1. Then the net z force
on module » due to the two right-hand springs is
2K[¢,(n + 1) — ¢, (n)]. In the continuous limit this be-
comes 2Kady, /3z, evaluated at z = a/2. Similarly the two
left-hand springs give a net z force of — 2Kady,/dz at
z = — a/2. The total force due to all four springs is thus, in
the continuous limit,

F, = 2Ka?3 %y, /972, (A1)

evaluated at z = 0. According to Newton’s second law this
gives, for the z acceleration of the module of mass M = 2m,

(2m)d*y,/dt? =F, = 2Ka*d ™y, /37%, (A2)
which can be written

A%y /0t? = A%, /32, (A3)
where

¢’ = Ka*/m. (A4)

Here ¢ is the square of the wave velocity for the longitudi-
nal waves satisfying the classical wave equation, Eq. (A3).
For a definite angular frequency » these waves have the
form (for traveling waves)

¥, = A cos(kz — wt + a), (AS)

with dispersion relation given by substituting (AS) into
(A3) to get

@* = c*k> (A6)
For these waves the wave velocity w/k and group velocity
dw/dk both equal ¢ for all k; therefore all frequencies travel
at the same speed c¢. Thus a delta function excitation of
longitudinal waves does not become “‘dispersed” so as to
become a whistler.

For a wire of rectangular cross section 4 we can imagine
it to be made up of a large number N of the above one-
dimensional wirelets, bundled together. Since the springs
are in parallel, the total spring constant is larger than K by a
factor NV, but so is the mass, so the ratio K /m in Eq. (A4) is
unchanged. Multiply numerator and denominator of Eq.
(A4) by area A. define m/Aa = p, the mass per unit vol-
ume, and Y = Ka/A, Young’s modulus, so that Eq. (4)
gives ¢> = Y /p, which we can look up in the handbook,
given the material.

Next consider the case of present interest, where the mo-
tion is transverse. Then the shear force will be non zero. Let
S, (z) be the shear force in the + x direction on the right-
hand end of a horizontal arm that has its right-hand end
located at z. Then the central module of Fig. 1 has total
force F, in the x direction given by F, =8, (a/
2) — 8, (—a/2). When we go to the continuous limit and
assume .S, (z) is a slowly varying continuous function of z
that gives

ads,
dz

Let ¢x (n,t) = ¢, (z,¢) be the x displacement of module »

from equilibrium at time z. Then Newton’s second law

[with Eq. (A7)] gives
M3*y, . adSx

ot? * 9z

F, = (A7)

(A8)
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where M = 2m for the sketch. Notice that in the configura-
tion shown in the sketch both the shear forces S, have the
same lever arm @/2 and exert essentially the same torque
(same direction and nearly the same magnitude) on the
central module, so that the net counterclockwise torque on
the central module due to shear is aS,, . We do not want our
module to start rapidly rotating. We therefore assume that
whenever there is a shear S, , as shown, the modules will
have reached a quasistatic equilibrium where there is a
counterbalancing torque due to the horizontal springs such
that the total torque is zero. (It is not precisely zero. We
allow gradual changes in module angle as long as the
changes are negligible in the small change in z, Az=a.)
That implies a gradually changing rotation angle of the
modules. Let 8, be the clockwise angle that the vertical leg
of module » makes with the vertical x axis. (We assume
6, €1 rad.) The elongation of the top-right spring is then
18, ., — 6,). Multiply that elongation by K to get the
spring tension, and then by / to get the clockwise torque
KI*(8,,, — 08,) exerted about the center of module n by
the top-right spring. The bottom right spring is compressed
by the same amount that the top-right spring is extended,
and doubles this torque to 2K/?*(6, . ; — 6,,). In the con-
tinuous limit we have 8, |~ 1 — 8, = adf /dz, evaluated at
z = a/2, so the torque due to the two right-hand springs
becomes 2K/ 2%ad0 /Jz, evaluated at z= + a/2. The two
left-hand springs similarly contribute a clockwise torque
—2KI*6, —6,_,)= —2Kl%ad0/3z, at z= —a/2.
All four springs therefore give a total clockwise torque
2K1%a%3%0 /2%, at z = 0. We demand that this torque can-
cel the counterclockwise torque aS, due to shear, so we
must have

2,222
aS, = M. (A9)
oz
Then Eq. (A8), with M = 2m, combined with (A9) gives
a4y K1%a%33%0
X — . Al0Q
e oz (A10)
But, we also have, for slowly varing &,
o= —x (A11)
oz
so that (A10) becomes
2 2,2 4
Yx _ _ (Kl'a’/m)3*Y, ' (A12)
dr? az*
Now we add additional masses m distributed uniformly
fromx = —/ to + /between the two masses shown in Fig.

1. We connect the new masses to their horizontal neighbors
by additional horizontal springs of constant K. Since the
springs are in parallel, their spring constants are additive,
but so are the masses m; therefore the ratio X /m in Eq.
(A12) is unchanged. However I/ in Eq. (A12) must be
replaced by the average of x* from x =0 to x = /. That
replaces /% by (1/3)17, which is called 72, where r is the
“radius of gyration.” Thus Eq. (A12) becomes [using also
Eq. (A4)]
IYx _ _ ProYY,

ar? at (AL3)
where 7* = /?/3, and ¢? is given by Eq. (A4). Equation
(A13) is a wave equation, but it is not the “classical” one.
For a definite angular frequency « a traveling wave solu-
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tion to Eq. (A13) has the form
¥, = A cos(kz — wt + a). (Al14)

Substituting (A 14) into the (A 13) gives the dispersion re-
lation

o = *rk?,
which is Eq. (1).

(Al15)

"My slinky was made by James Industries, Inc., Hollidaysburg, PA, and is
available in many toy stores. It is made of steel wire having a rectangular
cross section. Mine has wire with wide transverse dimension d, = 0.262
cm and thin transverse dimension d, = 0.064 cm. The wire is wound in a
helical coil of diameter 7.3 cm, so that each turn has length 77X 7.3 = 23
cm along the wire. The thin transverse dimension is oriented along the
helix axis, and the wide dimension along the radial direction, with succes-
sive wide flat faces resting against one another when the slinky is not
extended. My slinky has N =95 turns for a total wire length

The Casimir effect revisited
Frederik J. Belinfante

L =95%23 = 2180 ¢m, and a total helix length 95X 0.064 = 6 cm when
unextended. Some toy stores sell plastic slinkies that give fine whistlers.
There are also smaller-diameter steel slinkies.

2The most famous whistlers are electromagnetic; a lightning stroke “delta
function” in the Earth’s northern hemisphere produces radiation that
travels out through the ionosphere along the Earth’s magnetic lines of
force as if in a wave guide, returns to the Earth’s surface in the southern
hemisphere, reflects there and retraces its path, returning once more to
the surface near its starting point, where it can be heard on an ordinary
audio amplifier equipped with a 200-ft antenna. Because of the dispersive
behavior of the ionosphere the high-frequency components of the delta
function return first, and one hears a swiftly descending whistle. See Ref.
3. (For an entirely different kind of whistler see Ref. 4)

3R. Helliwell, Whistlers and Related Ionospheric Phenomena (Stanford
U. P, Stanford, CA, 1965).

4F. 8. Crawford, “Culvert whistlers,” Am. J. Phys. 39, 610 (1971).

SR. V. Sharman, Vibrations and Waves (Butterworth, London, 1963),
Sec. 5.7. Sharmon’s Eq. (5.34) is equivalent to our Eq. (1), but Shar-
mon’s “k " is our r = d /(12)"/?, the radius of gyration.
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Using Wick’s normal-ordered expression for the quantum-mechanical energy of a radiation field,
so that in absence of matter the zeropoint energy of a radiation field would vanish, the Casimir
effect of attraction between uncharged condenser plates in absence of photons will still follow, due
to a nonvanishing but finite zeropoint radiation energy in the presence of these plates. If we
assume the plates to be transparent for electromagnetic waves of sufficiently high frequency, the
remaining zeropoint energy density itself will be finite (and not merely its variation under a
change of the distance between the plates). These results are obtained by a more careful
consideration of where in sums over modes of vibration one should use sums over running waves
with a periodicity condition, where one should sum over standing waves with nodes at conducting
boundaries, and where these sums may be replaced by integrals.

1. INTRODUCTION

In its most primitive form, quantum field theory of ele-
mentary particles expresses physical quantities for bosons
by classical field expressions and for fermions by the ex-
pressions of wave mechanics, replacing in these expressions
the fields by so-called “quantized” fields, i.e., by operators
which describe the annihilation and creation of elementary
particles, when they operate on the state vector ¥, which
for these fields of particles describes the probabilistic state,
somewhat like in elementary wave mechanics the wave
function 3 describes the probability distribution of an elec-
tron.! These classical expressions in terms of quantized
fields generally lead to nonsensical (infinite) results. Pres-
ently we will not consider the more sophisticated infinities
that arise from interactions between particles, or the meth-
ods by which those infinities may be eliminated. More tri-
vial infinities arise already when one considers the total
electric charge of, say, a free electron field, or the total
energy of a field of noninteracting bosons. These infinities
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are trivial, because it is easy to simply omit them, in Dirac’s
electron wave mechanics by ignoring the charge of infinite-
ly many electrons occupying states of negative energy, and
in quantum electrodynamics by writing for the energy of
free photons

E°=SN3hA, (1a)

k

instead of
EQ=Y Ny +Dhhi, (1b)

k

where the subscript ¢ reminds us of the use of the classical
expression for the energy expressed in terms of quantized
fields, while the superscripts O remind us that we here are
considering a boson field in the absence of matter. With a
finite number of free bosons present (or with none present
when N9 = 0), we could formally calculate E° from the
quantized classical E? by subtracting from the latter the
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