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A vector space V over a field F has the operations of addition and scalar
multiplication, and satisfies several basic laws. A vector space in a vector space is a
subspace.

A vector v € VV is a linear combination of vectors of S € V if there exist a finite number
of vectors uy,u,, ...u, € S and scalars ay,a,, ...a, € F such that

v=au + -+ a,u,.

If 0 can be nontrivially written in this form, S is linearly dependent. The set of all v in
the above for is the subspace generated (spanned) by S.

A basis B for V is a linearly independent subset of V that generates V.

Replacement Theorem: (Simplified) Every linearly independent set can be made into a
basis by adding elements.

Every basis for V contains the same number of vectors. The unique number of vectors
in each basis is the dimension of V (dim(V)).
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Every vector space has a basis.
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For vector spaces V and W over F, a function T:V — W is a linear transformation
(homomorphism) if for all x,y € V andc € F,

@Tx+y)=Tx)+TH)
(b) T(cx) = cT(x)
The null space or kernel is the set of all vectors x in V such that T(x)=0.
N(T) ={x e V|T(x) = 0}
The range or image is the subset of W consisting of all images of vectors in V.
R(T) ={T(x)|x € V}

Both are subspaces. nullity(T) and rank(T) denote the dimensions of N(T) and R(T),
respectively.

Dimension Theorem: If V is finite-dimensional, nullity(T)+rank(T)=dim(V)

Linear transformations (over finite-dimensional vector spaces) can be viewed as
left-multiplication by matrices, so linear transformations under composition and
their corresponding matrices under multiplication follow the same laws. This is a
motivating factor for the definition of matrix multiplication. Facts about matrices
can be proved by using linear transformations, or vice versa.

Matrix product:

Let Abe am xn and B be a n X p matrix. The product AB is the m X p matrix with
entries

n
k=1

Interpretation of the product AB:

1. Row picture: Each row of A multiplies the whole matrix B.

2. Column picture: A is multiplied by each column of B. Each column of AB is a
linear combination of the columns of A, with the coefficients of the linear
combination being the entries in the column of B.

3. Row-column picture: Cjj is the dot product of row | of A and column j of B.



The matrix representation of Tin § = {vy,...,v,}andyis A = [T]E. Load the coordinates

of T(v;) into the ith column. [IV]%g changes B-coordinates to y-coordinates. So:

[T, = 1) [T1p 1}
B = QAQ!

Linear transformations T, U Matrices A, B

rank(TU) < min(rank(T), rank(U)) | rank(AB) < min(rank(A), rank(B))
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Fundamental Theorem of Linear Algebra (Part 1):

Dimensions of the Four Subspaces: A is mxn, rank(A)=r (If the field is complex, replace
AT by A*)

Row space C(47) Column space C(A)
« {4y} * {Ax}
e Dimension r e Dimension r

F™ =C(A)®NAD

F" = C(A)T®N(4)

Nullspace N(4)
o {x|Ax = 0}
e Dimension n-r

Left nullspace N (A7)
« {y|ATy = 0}
e Dimension m-r
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The determinant (denoted |A| or detifi4)) is a function from the set of square matrices
to the field F, satisfying the following conditions:

1. The determinant of the nxn identity matrix is 1, i.e. det(I) = 1.
2. If two rows of A are equal, then det(A) = 0, i.e. the determinant is alternating.
3. The determinant is a linear function of each row separately, i.e. it is n-linear. That
is, if ay, ... a,, u, v are rows with n elements,
a1
I

a; a;
( ar_1 \’ /ar—l\

det| u+kv |=det| u |+kdetil v
Ar+1 | | Ar+1 | I Ar+1 |
)\

\ a, /
These properties completely characterize the determinant.

Cofactor Expansion: Recursive, useful with many zeros, perhaps with induction.
(Row)
n n
det(A4) = Z a;Cyj = Z a;; (-1 det(M;;)
j=1 j=1
(Column)

S

n

det(A) = Z aij Cl] = Z aij (—1)l+] det(Ml])
i=1 i=1
where M;; is A with the ith row and jthe column removed.

Cramer’s Rule:

If A'is a nxn matrix and det(A4) # 0 then Ax = b has the unique solution given by

(B
x; = dﬂ‘—(l) <i<n
detifiA)
Where B; is A with the ith column replaced by b. If det(4) = 0, then A is singular (has no
inverse).
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Let T be a linear operator (or matrix) on V. A nonzero vector v € V is an eigenvector of
T if there exists a scalar 4, called the eigenvalue, such that T(v) = Av. The eigenspace
of A is the set of all eigenvectors corresponding to A: E; = {x € V|T(x) = Ax}.

The characteristic polynomial of a matrix A is det‘iA — AI). The zeros of the
polynomial are the eigenvalues of A. For each eigenvalue solve Av = Av to find linearly
independent eigenvalues that span the eigenspace.

If there are n linearly independent eigenvalues, T (A) is diagonalizable:
[T1, = W15 [T1s [}
A= QAQ1
Where A = [T]; is a diagonal matrix.

Applications to recursive sequences, probability (Markov chains).
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The incidence matrix of a graph: A has a row and column for each vertex, and 4;; = 1
if vertices i and j are connected by an edge, and 0 otherwise.

The incidence matrix A for a family of subsets {S, ..., S,;} containing elements {x4, ..., x,, }
lifx; € §;
0ifx; € S
dependency, etc. may give conclusions about the sets. Working in the field Z, on
problems dealing with parity may help.

has A4;; = { Exploring AA” and using properties of ranks, determinants, linear



