
Proofs from THE BOOK Lecture Notes

Taught by Saarik Kalia

1 Euclid’s Theorem

Theorem. There are infinitely many prime numbers.

Definition. An integer p > 1 is prime if and only if there exist no integers
a, b > 1 so that p = ab.

Basic facts about primes and factorization:

• The only positive factors of a prime p are 1 and p.

• Every integer N > 1 has a prime factor.

• The only factor of 1 is itself. (1 is not considered to be prime.)

Proof. We show that for any finite list of primes, there exists another prime,
and so there must be infinitely many prime numbers. Let p1, p2, . . . , pn be
a finite list of primes, and set P = p1p2 · · · pn. Now consider the number
Q = P + 1. It is either prime or not prime.

• If Q is prime, then it is not in the list (as it is greater than all p1, . . . , pn),
so we have found our additional prime.

• If Q is not prime, then it has a prime factor p. Suppose p is in the
list. Then p divides P (since it is the product of all the primes in the
list), as well as Q. Therefore p divides their Q− P = 1 as well, but no
prime number divides 1. Therefore p was not in the list, and we have
our additional prime.
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2 Fermat’s Little Theorem

Theorem. Let p be a prime number, and a an integer. Then

ap ≡ a (mod p).

Definition. Let a, b,m be integers so that a− b is divisble by m. Then we
say a and b are congruent modulo m and write a ≡ b (mod m).

Basic facts about modular arithmetic:

• If a ≡ b (mod m), then b ≡ a (mod m).

• If a ≡ b (mod m) and b ≡ c (mod m), then a ≡ c (mod m).

• If a1 ≡ b1 (mod m) and a2 ≡ b2 (mod m), then

a1 + a2 ≡ b1 + b2 (mod m) and a1a2 ≡ b1b2 (mod m).

Proof (Golomb). Let us consider strings of beads. Suppose we have all pos-
sible strings of p beads, where each bead is colored with one of a possible
colors. Therefore there we will have ap such strings (there are a choices of
color for each bead, so we get a · a · · · a︸ ︷︷ ︸

p times

total choices). Note that we may

turn each string into a necklace by tying the ends together. Now group all
strings which form the same neckalce together, i.e. one can be rotated to
obtain the other.

For any string which has at least two colors, we can see that its group has
exactly p strings, since each rotation produces a different string. However,
any string which only has one color lies in its own group, since rotating it
gives back the same string. There are a such strings, one for each color, and
so there are ap − a strings which are not alone in their group. Since each of
these groups has p elements, then we see ap − a must be divisble by p, or in
other words, ap ≡ a (mod p).

3 Euler’s Theorem

Theorem. Let u,m be integers which are relatively prime. Then

uϕ(m) ≡ 1 (mod m).
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Definition. Two integers a, b are relatively prime if and only if they have
no positive common divisor except 1.

Definition. For any integer m, its totient ϕ(m) is the number of positive
integers less than or equal to m which are relatively prime to m.

Basic facts about relatively prime numbers:

• If p is prime and a is not divisble by p, then a and p are relatively
prime. Therefore ϕ(p) = p− 1.

• If a and b are relatively prime, then a + kb and b are relatively prime,
for any constant k.

• If a and b are relatively prime, and c and b are relatively prime, then
ac and b are relatively prime.

• If u and m are relatively prime, then there exists some integer w so
that uw ≡ 1 (mod m).

Sketch of proof: Consider all possible values of au+ bm, where a, b are
integers. Call the smallest possible positive value d = a0u + b0m. We
may write m = qd + r, where r is the remainder when m is divided
by d and q is the quotient. Then r = −qa0u + (1 − qb0)m, so r < d
is a smaller possible value. Therefore r cannot be positive so r = 0,
meaning d divides m. Similarly, d divides u. Therefore d is a common
divisor of u and m, so d = 1. Then we can write ua0 ≡ 1 (mod m).

Proof. Label the positive integers relatively prime to m which are less than
or equal to m as a1, a2, . . . , aϕ(m). Consider what happens when we multiply
each of these by u, and reduce modulo m. Each uai is still relatively prime
to m, and reducing modulo m subtracts a multiple of m, so it will still be
relatively prime. Therefore uai = aj for some j. In fact, there cannot be
another ak so that uak = aj. This is because multiplying by w (as above)
shows that uai = uak implies ai = ak. Thus multiplying by u and reducing
modulo m simply sends the numbers a1, a2, . . . , aϕ(m) back to themselves
one-to-one (in a different order). Then taking the product of this list, shows

ua1 · ua2 · · ·uaϕ(m) ≡ a1 · a2 · · · aϕ(m) (mod m)

uϕ(m) · a1 · a2 · · · aϕ(m) ≡ a1 · a2 · · · aϕ(m) (mod m)

uϕ(m) ≡ 1 (mod m).
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4 Pythagorean Theorem

Theorem. Let a, b, and c be the lengths of sides of a right triangle, with c
being the length of the side opposite to the right angle. Then

a2 + b2 = c2.

Proof. Consider the following diagram

consisting of four right triangles and a square arranged into one large square.
The triangles each have area a·b

2
. The smaller square has area c2, where c is

the length of the hypotenuse of each of the right triangles. The large square
has area (a+ b)2. Equating areas gives

(a+ b)2 = 4 · a · b
2

+ c2

a2 + 2ab+ b2 = 2ab+ c2

a2 + b2 = c2.

5 Irrational Powers of Irrational Numbers

Theorem. There exist irrational numbers a, b so that ab is rational.

Definition. We say a real number x is rational if and only if we can write
x = p

q
where p, q are integers. If a number is not rational, we say it is

irrational.
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Lemma.
√

2 is irrational.

Proof. Suppose that
√

2 is rational, so there exist integers p, q such that√
2 = p

q
and p and q are relatively prime. Then we have 2 = p2

q2
or equivalently

2q2 = p2. We can see that p2 is even, and so p is as well. Let us write p = 2k.
Then we have 2q2 = 4k2 or equivalently q2 = 2k2. By similar argument,
q is then even, and so p and q are not relatively prime. Thus we have a
contradiction, so

√
2 is irrational.

Proof of Theorem. Consider the number
√

2
√
2
. This is either rational or

irrational. If it is rational, then setting a = b =
√

2 will suffice. If it is

irrational, then setting a =
√

2
√
2

and b =
√

2 will suffice because

ab =

(√
2
√
2
)√2

=
√

2
(
√
2·
√
2)

=
√

2
2

= 2

is rational.

6 Cantor’s Diagonalization Argument

Theorem. The set of real numbers R is uncountable.

Definition. A set S is countable if and only if each element can be assigned
a unique positive integer, i.e. they can be written in a list s1, s2, . . . so that
every element appears. If a set is not countable, we say it is uncountable.

Basic facts about countability:

• The set of positive integers N is, by definition, countable.

• The set of integers Z is countable, by listing them as 0, 1,−1, 2,−2, . . ..

• The set of rational numbers Q is countable, by listing them as
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Proof. It suffices to show that the real numbers between 0 and 1 are uncount-
able, as they are a subset of R. Suppose there exists some way to list the real
numbers between 0 and 1 as r1, r2, . . .. We will show that there exists a real
number between 0 and 1 not in this list. Write each ri in binary, and label
its digits so that aij is the jth digit (after the decimal point) of ri’s binary
expansion. Then construct the number r whose ith digit (after the decimal
point) is 0 if aii = 1 and is 1 if aii = 0. Note that r then differs from each ri
in its ith digit, and so r cannot be in the list. Thus we have a contradiction,
so the set of real numbers are uncountable.

7 Russell’s Paradox

Theorem. There exists no universal set, i.e. a set which contains all objects.

Proof. Suppose there were a universal set U . Consider the set S of all objects
x ∈ U so that x /∈ x. Since U is a universal set, then S ∈ U . Now we ask
whether S ∈ S or S /∈ S. If S /∈ S, then it satisfies the definition to be in
S, so S ∈ S. If however S ∈ S, then by definition of S, it must satisfy the
property S /∈ S. Therefore, either way we reach a contradiction and so there
can be no universal set.
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8 Sum of Squares

Theorem.
n∑
k=1

k2 =
n(n+ 1)(2n+ 1)

2

Lemma.
n∑
k=1

k =
n(n+ 1)

2

Proof (Gauss). Write S =
∑n

k=1 k. Then

S = 1 + 2 + · · · + n− 1 + n
S = n + n− 1 + · · · + 2 + 1
2S = n+ 1 + n+ 1 + · · · + n+ 1 + n+ 1 = n(n+ 1).

Therefore S = n(n+1)
2

.

Proof of Theorem. Consider the following triangle, and its two rotations.

1
2 2

3 3 3

. .
. ...

...
. . .

n n · · · n n

n
n n− 1

n n− 1 n− 2

. .
. ...

...
. . .

n n− 1 · · · 2 1

n
n− 1 n

n− 2 n− 1 n

. .
. ...

...
. . .

1 2 · · · n− 1 n

Since each row of the first triangle has the number k repeated k times, it is
clear that the sum of the entries in this triangle is S =

∑n
k=1 k

2. Superim-
posing the triangles, i.e. adding corresponding elements together, will in fact
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give a triangle whose entries are all 2n+ 1. This is true because the element
in the jth position (from the left) and ith row of the first triangle is i. In the
second triangle, it is n − j + 1. And in the third triangle, it is n − i + j.
Adding these together gives 2n + 1. Note that this triangle must have sum
3S, since it is gotten from 3 triangles, each with original sum S. Moreover
by the above lemma, the triangle has n(n+1)

2
entries. Therefore

3S =
n(n+ 1)

2
· 2n+ 1

S =
n(n+ 1)(2n+ 1)

6
.

9 Sum of Totient Function

Theorem. ∑
d|n

ϕ(d) = n,

where the sum is taken over all positive integers d which divide n.

Proof. Consider the fractions

1

n
,

2

n
,

3

n
, · · · , n− 1

n
,
n

n
.

Let us reduce each of these fractions to lowest terms, and consider how many
times the denominator d appears, where d is a factor of n. In order to
be in lowest terms, the numerator must be relatively prime to d, so there
can be at most ϕ(d) such fractions. In fact, each of these fractions will
appear, because multiplying the numerator and denominator by n

d
shows

which original fraction they came from. Therefore, for every divisor d of n,
there are ϕ(d) fractions appearing in the above list. Since the list has n
fractions, then we get ∑

d|n

ϕ(d) = n.
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10 Basel Problem

Theorem (Euler).
∞∑
n=1

1

n2
=
π2

6

Proof. Consider the function sinx. It has zeroes at 0 and ±nπ for all positive
integer n. Treating it as an infinite polynomial, we may factor it as

sinx = Ax
(

1− x

π

)(
1 +

x

π

)(
1− x

2π

)(
1 +

x

2π

)(
1− x

3π

)(
1 +

x

3π

)
· · ·

= Ax

(
1− x2

π2

)(
1− x2

4π2

)(
1− x2

9π2

)
· · · ,

where A is some constant. Now we may compare this to its Taylor expansion

sinx = x− x3

3!
+
x5

5!
− · · · .

(This is a fact from calculus, which I will not give proof of here.) These
expansions must have equal coefficients. The coefficient of the linear term in
the Taylor expansion is 1. To expand our product, just as in finite products,
we take all terms gotten by multiplying terms from each factor. Thus the
only linear term we get comes when we choose the 1 in each factor (otherwise
we have a higher power of x). Therefore the linear coefficient in our expansion
is A. This shows A = 1, so now we have

sinx = x

(
1− x2

π2

)(
1− x2

4π2

)(
1− x2

9π2

)
· · · .

Now the cubic coefficient in the Taylor series is − 1
3!

= −1
6
. The cubic terms

in our expansion are gotten by choosing the x2 term from one of the binomial
factors and the 1 term from all the others. If we choose our x2 term from the
nth binomial factor, then the term we get is − x3

n2π2 . Thus our total coefficient
is
∑∞

n=1−
1

n2π2 , and so we have

∞∑
n=1

− 1

n2π2
= −1

6

∞∑
n=1

1

n2
=
π2

6
.
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Other Cool Theorems and Proofs

The following is a list of other statements in mathematics, either whose proof
or result, is particularly interesting. I encourage you to look some of these
up. (Despite what your English teacher says, Wikipedia is a great source
for math.) Some of these statements and proofs will likely involve math you
have not gotten to yet. That just gives you more of a reason to learn more,
so you can come back to these one day and actually understand them.

• Art Gallery Problem

• Quadratic Reciprocity

• Lagrange’s Four Square Theorem

• Bertrand’s Postulate

• The integral of a Gaussian:
∫∞
−∞ e

−x2 =
√
π

• Crystallographic Restriction Theorem

• Abel-Ruffini Theorem

• Banach-Tarsky Paradox

• Brouwer Fixed Point Theorem

• Fermat’s Last Theorem (good luck understanding that proof)
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