
Symposium on Theoretical Aspects of Computer Science 2008 (Bordeaux), pp. 373-384
www.stacs-conf.org

COMPLEXITY OF SOLUTIONS OF EQUATIONS

OVER SETS OF NATURAL NUMBERS

ARTUR JEŻ 1 AND ALEXANDER OKHOTIN 2

1 Institute of Computer Science, University of Wroc law, Poland
E-mail address: aje@ii.uni.wroc.pl

2 Department of Mathematics, University of Turku, Finland; Academy of Finland
E-mail address: alexander.okhotin@utu.fi

Abstract. Systems of equations over sets of natural numbers (or, equivalently, language
equations over a one-letter alphabet) of the form Xi = ϕi(X1, . . . , Xn) (1 6 i 6 n) are
considered. Expressions ϕi may contain the operations of union, intersection and pairwise
sum A+B = {x+y | x ∈ A, y ∈ B}. A system with an EXPTIME-complete least solution is
constructed, and it is established that least solutions of all such systems are in EXPTIME.
The general membership problem for these equations is proved to be EXPTIME-complete.

1. Introduction

The study of expressions over sets of numbers and of the computational complexity of
their properties began in the paper by Stockmeyer and Meyer [17], who considered subsets of
N0 = {0, 1, 2, . . .} as formal languages over a one-letter alphabet. In this case, concatenation
of languages turns into a pairwise addition of elements of sets: X+Y = {x+y|x ∈ X, y ∈ Y }.
Stockmeyer and Meyer established that the membership problem for expressions with union,
intersection and addition is NP-complete.

Some extensions of this result were obtained by Yang [18], who considered integer cir-
cuits (that is, expressions in which subexpressions may be shared) with one more operation
of pairwise multiplication, and established similar complexity results. A systematic study
of complexity of expressions and circuits with different sets of operations was carried out
by McKenzie and Wagner [9, 10].

In this paper we consider equations over sets of natural numbers, which are a more
general device than expressions and circuits, and study the computational complexity of
their least solutions, as well as of their membership problem. These equations naturally
correspond to language equations over a one-letter alphabet. Language equations have
recently become an active area of research, see a recent survey by Kunc [8]. In particular,
unexpected hardness results on language equations have been obtained by Kunc [7] and by

(A. Jeż) Supported by MNiSW grant number N206 024 31/3826, 2006–2008, and by a short visit grant
from the European Science Foundation under project AutoMathA, reference number 1763.
(A. Okhotin) Supported by the Academy of Finland under grant 118540.

c© A. Jeż and A. Okhotin
CC© Creative Commons Attribution-NoDerivs License

STACS 2008
Symposium on Theoretical Aspects of Computer Science 2008 (Bordeaux), pp. 373-384
http://drops.dagstuhl.de/opus/volltexte/2008/1319

374 A. JEŻ AND A. OKHOTIN

Okhotin [15, 16], and this connection gives another motivation for our study. Recent results
by Jeż [5] on the expressive power of conjunctive grammars provide a technical foundation
for our results.

We consider equations in the resolved form



X1 = ϕ1(X1, . . . , Xn)
...

Xn = ϕn(X1, . . . , Xn)

(*)

in which every variable Xi assumes value of a set of nonnegative integers. The right-hand
side ϕi of each equation may contain the operations of union, intersection and +, as well as
singleton constants. Every such system has a least solution with respect to componentwise
inclusion, which can be obtained by fixpoint iteration. Our result, established in Section 3,
is a construction of a system (*), such that testing the membership of numbers in its least
solution is an EXPTIME-hard problem (with the numbers given in binary notation). The
result is obtained by a new kind of arithmetization of an alternating linear-space Turing
machine. It is also shown that for every system (*) the membership of numbers in its least
solution can be tested in exponential time, which makes the constructed set the hardest.

Let us compare our result to the existing results on expressions and circuits on sets of
numbers. Previous research was concerned with the complexity of the general membership
problem, where it was sufficient to encode an instance of some hard problem for numbers
in an expression or a circuit. In our case, the task is to construct a system that represents
a class of problems, while instances of that problem are to be encoded as numbers.

As compared to the research on language equations, our present approach studies a
similar problem of constructing a representation of a hard set (cf. Kunc [7], Okhotin [15, 14],
Jeż [5]). However, while encoding a computation of a Turing machine as a string over {a, b}
is an ordinary task, in our case we have to encode similar objects as numbers, that is, as
strings over a one-letter alphabet. These strings have no apparent structure, and hence the
proposed arithmetization is quite unobvious.

This result allows us to establish the complexity of the general membership problem for
equations with {∪,∩,+}, which is stated as follows: “Given a system and a number n > 0
in binary notation, determine whether n is in the first component of the least solution of

the system”. For integer expressions and integer circuits with the operations {∪,∩,+}, it
is known from Stockmeyer and Meyer [17] and from McKenzie and Wagner [9, 10] that a
similar problem is PSPACE-complete. Another weaker model are equations with {∪,+},
that is, without intersection, for which the corresponding problem is NP-complete due to
the result of Huynh [4] on the commutative case of the context-free grammars. In our case
of equations with {∪,∩,+}, the general membership problem is EXPTIME-complete, which
is established in Section 4. An exponential algorithm for solving this problem is given by a
parsing algorithm on conjunctive grammars [13].

2. Language equations and conjunctive grammars

While our results are on the complexity of equations in sets of numbers, our methods
are derived from the domain of formal language theory, in particular, from some recent
results on language equations.

In language equations, the unknowns are formal languages over an alphabet Σ. If
|Σ| = 1, they coincide with equations over sets of numbers, while for larger alphabets

COMPLEXITY OF SOLUTIONS OF EQUATIONS OVER SETS OF NATURAL NUMBERS 375

they constitute a more general notion. The main object of this study are equations of the
resolved form (*), in which variables assume values of sets of non-negative integers, and
the right-hand sides may contain the operations of union, intersection and addition of sets.
These equations obviously correspond to language equations over a one-letter alphabet with
the operations of union, intersection and concatenation, and the recent results on language
equations of this kind provide a theoretical foundation, as well as a second motivation, for
the present research.

The first type of language equations to be studied were equations of the same form (*)
containing union and concatenation, but no intersection: Ginsburg and Rice [3] established
that these equations provide a natural semantics for the context-free grammars. Equations
with added intersection therefore constitute a generalization of the context-free grammars.

Definition 2.1 (Okhotin [12]). A conjunctive grammar is a quadruple G = (Σ, N, P, S),
in which Σ and N are disjoint finite non-empty sets of terminal and nonterminal symbols
respectively; P is a finite set of grammar rules, each of the form

A → α1& . . . &αn (where A ∈ N , n > 1 and α1, . . . , αn ∈ (Σ ∪ N)∗)

while S ∈ N is a nonterminal designated as the start symbol.
The semantics of conjunctive grammars is defined by the least solution of the following

system of language equations:

A =
⋃

A→α1&...&αm∈P

m⋂

i=1

αi (for all A ∈ N) (2.1)

The component corresponding to each A ∈ N is then denoted by LG(A), and L(G) is
defined as LG(S).

The operations used in the right-hand sides of systems (2.1) are union, intersection and
concatenation. Since they are monotone and continuous, a least solution always exists and
can be obtained by fixpoint iteration as

⊔

i>0

ϕi(∅, . . . , ∅), (2.2)

where ϕ is the right-hand side of (2.1) as a vector operator on |N |-tuples of languages, while
t denotes pairwise union of vectors of sets.

An equivalent definition of conjunctive grammars can be given using term rewriting
[12], which generalizes Chomsky’s word rewriting. The importance of these grammars lies
with the fact that their expressive power is substantially greater than that of the context-
free grammars, while the generated languages can still be parsed in time O(n3), and the
practical context-free parsing algorithms, such as recursive descent and generalized LR,
admit generalization to conjunctive grammars without an increase in their complexity.

The question of whether conjunctive grammars can generate any non-regular unary
language has been an open problem for some years, until recently solved by Jeż [5], who
constructed a grammar for the language {a4n

| n > 0}. Let us reformulate this grammar as
the following resolved system of four equations over sets of numbers:

376 A. JEŻ AND A. OKHOTIN

Example 2.2 (Jeż [5]). The system




X1 =
(
(X2 + X2) ∩ (X1 + X3)

)
∪ {1}

X2 =
(
(X12 + X2) ∩ (X1 + X1)

)
∪ {2}

X3 =
(
(X12 + X12) ∩ (X1 + X2)

)
∪ {3}

X12 =
(
(X3 + X3) ∩ (X1 + X2)

)

has least solution Xi = {` | base-4 notation of ` is i0 . . . 0}, for i = 1, 2, 3, 12.

Sets of this kind can be conveniently specified by regular expressions for the corre-
sponding sets of base-k notations of numbers, which in this case are 10

∗, 20
∗, 30

∗ and
120

∗, respectively. In the following we shall omit some parentheses in the right-hand sides
of equations, and assume the following default precedence of operations: addition has the
highest precedence, followed by intersection, and then by union with the least precedence.

Using the same technique in a more elaborate construction, a general theorem on the
expressive power of unary conjunctive grammars was established. It can be reformulated
for equations over sets of numbers as follows:

Theorem 2.3 (Jeż [5]). For every k > 2 and for every finite automaton M over the alphabet

{0, . . . , k − 1} there exists a system of resolved language equations over N0 using ∪,∩,+,

such that its least solution is

(S1, S2, . . . , Sn),

where Si ⊆ N0 and S1 = {` | k-ary notation of ` is in L(M)}.

Let us note in passing a recent paper by Jeż and Okhotin [6] establishing a generalization
of this result to a larger family of automata recognizing positional notations.

Though representing sets of numbers with a regular positional notation using this type
of formal grammars was an unexpected and strong result in terms of language theory, it
has no implications on computational complexity, as all these sets are computationally easy.
More general representation theorem of Jeż and Okhotin [6] also does not imply any better
complexity results than P-completeness, which, as the present paper shows, is much below
the actual complexity of these equations.

Therefore, a new method of constructing such equations is needed to understand their
complexity. This step is made in the next section, which introduces an arithmetization
technique based upon addition of sets of numbers.

3. Representing an EXPTIME-complete language

In this section it will be shown that languages defined by least solutions of resolved
language equations using +, ∪ and ∩ can be EXPTIME-complete, and this is the hardest
language in this family. Denote this family by EQ(∪,∩,+).

Theorem 3.1. The family EQ(∪,∩,+) is contained in EXPTIME and contains an

EXPTIME-complete language.

The proof is by constructing such a system of equations. The given system encodes a
computation of a linear-bounded alternating Turing machine (ATM) It is known that such
machines can recognize some EXPTIME-complete languages [2].

In our case we shall consider ATMs operating on a circular tape and moving to the
right at every step. Its tape originally contains the input word, and the squares containing

COMPLEXITY OF SOLUTIONS OF EQUATIONS OVER SETS OF NATURAL NUMBERS 377

it constitute all space available to the machine. Obviously, such machines are as powerful
as linear-bounded ATMs of the general form.

Formally, such a machine is defined as M = (Ω,Γ, QE , QA, δ, q0, qfin), where Ω is the
input alphabet, Γ = {a0, a1, . . . , amax} ⊃ Ω is the tape alphabet, QE and QA are disjoint
sets of existential and universal states, respectively, Q = QE∪QA and q0, qfin ∈ Q. Given an
input w ∈ Ω+, M starts in state q0 with the head over the first symbol of w. The transition
function is δ : Q×Γ → 2Q×Γ, and the head is moved one symbol to the right at every step.
Once the head moves beyond the right-most symbol, it is moved back over the first symbol
of w, maintaining its current state; this implements a circular tape. For technical reasons,
assume that (q, a′) /∈ δ(q, a) for all q ∈ Q and a, a′ ∈ Σ, (that is, the machine never stays in
the same state), and that δ(q, a) 6= ∅ for all q ∈ QA and a ∈ Σ.

Our construction of a system of equations over sets of numbers simulating a computation
is based upon representing instantaneous descriptions of the ATM as numbers. We shall
think of these numbers as written in base-(8+|Q|+max(|Q|+7, |Γ|)) positional notation, and
the entire argument is based upon mapping the symbols used by the machine to digits, and
then using addition to manipulate individual digits in the positional notation of numbers.
It must be noted that this positional notation is only a tool for our understanding of the
constructions, while the actual equations deals with numbers as they are.

Let Σ = {0, 1, . . . , 7 + |Q|+ max(|Q|+ 7, |Γ|)} be the alphabet of digits, and define the
mapping of symbols to digits, 〈·〉 : Q ∪ Γ → Σ, as follows:

〈qi〉 = 7 + i (for qi ∈ Q)

〈ai〉 = 7 + |Q| + i (for ai ∈ Γ)

Furthermore, let 〈Q〉 = {〈q〉 | q ∈ Q} and 〈Γ〉 = {〈a〉 | a ∈ Γ}. Now the tape of the ATM
containing symbols ai1 . . . ain , with the head over the j-th symbol and the machine in state
q, is represented as the following string of digits:

0〈ai1〉 . . . 0〈aij−1
〉〈q〉〈aij 〉0〈aij+1

〉 . . . 0〈ain〉0 ∈ Σ∗

For technical reasons, configurations in which the head has just moved over the last symbol
but has not yet jumped to the first position are considered separately, and will be represented
as strings of the form

0〈ai1〉 . . . 0〈ain〉〈q〉,

where q is the current state. Note that digits denoting letters are written only in even
positions, while odd positions are reserved for the states of the Turing machine. The set of
all strings of digits representing valid encodings of tapes is specified by the following regular
expression over Σ:

Tape = (0〈Γ〉)∗〈Q〉(〈Γ〉0)∗ \ 〈Q〉

The set Tape should be a considered as a formal language over Σ, which will be used later
as a part of representations of some sets of numbers. Subsets of this set representing tapes
with different states will be denoted as follows:

Tapeu = {w | w ∈ Tape, u is a substring of w}

Tape`
u = {w | w ∈ Tape, u is a prefix of w}

Besides the contents of the tape, the encoding for Turing machine configurations uses
a counter of rotations of the circular tape. This counter specifies the number of passes

378 A. JEŻ AND A. OKHOTIN

through the tape the machine is still allowed to make before it must halt. It is represented
in binary notation using digits {0, 1}, and the set of valid counter representations is

Counter = 1{0, 1}∗

Normally the counter uses only digits {0, 1}, but in order to implement the incrementation
of the counter we shall use strings with one digit 2 representing zero with carry. The set of
valid representations of counters with a carry is

Counter′ = 1{0, 1}∗2{0, 1}∗ ∪ 2{0, 1}∗

For every string ck−1 . . . c0 ∈ Counter∪Counter′, define its value as

Value(ck−1 . . . c0) =

k−1∑

j=0

cj · 2
j .

Now define the mapping from configurations of the Turing machine to numbers. A
configuration with the tape contents, head position and current state given by a string of
digits w ∈ Tape, and with the counter value given by x ∈ Counter is represented by a string
of digits

x55w,

where two marker digits 55 separate the values. This string of digits in base-|Σ| positional
notation specifies a certain number, which accordingly represents the configuration.

The key property of this encoding is that every transition of the ATM reduces the

numerical value of its configuration. Indeed, if the head is moved to the right, then a digit
〈q〉 is replaced with 0 and all other modifications are done on less signigicant digits. If the
head jumps from the end to the beginning, then the counter is decremented, and since the
counter occupies more significant positions in the number than the tape, this transition
decreases the value of the configuration as well. This monotonicity allows us to encode
dependence of configurations on each other by using addition of nonnegative numbers only.

The construction of equations representing the computation of the ATM begins with
some expressions that will be used in the right-hand sides of equations. These expressions
contain some constant sets of numbers given as regular languages over the alphabet Σ.
Every such language represents the set of all numbers with |Σ|-ary notation of the given
form. According to Theorem 2.3, every such set can be represented by a separate system of
equations using only singleton constants. All these subsystems are assumed to be included
in the constructed system, and each of the regular expressions in the system can be formally
regarded as a reference to one of the auxiliary variables.

Definitions of a few of these regular languages incorporate positional notations of num-
bers obtained by subtracting one number from another. For convenience, these values are
given in the form u � v, with u, v ∈ Σ∗ being positional notations of two numbers (the
former shall be greater or equal to the latter). One can write, e.g., (u � v)0∗ for the set of
all numbers with their |Σ|-ary notation beginning with fixed digits determined by the given
difference, followed with any number of zeroes.

COMPLEXITY OF SOLUTIONS OF EQUATIONS OVER SETS OF NATURAL NUMBERS 379

Step(X) =
(⋃

q∈QE
a∈Γ

⋃

(q′,a′)∈δ(q,a)

Moveq′,a′,q,a(X)
)
∪

(⋃

q∈QA
a∈Γ

⋂

(q′,a′)∈δ(q,a)

Moveq′,a′,q,a(X)
)

Moveq,a,q′,a′(X) =
(
X ∩ Counter 55Tape〈a〉〈q〉

)
+

(
〈q′〉〈a′〉0 � 〈a〉〈q〉

)
(00)∗

∩ Counter 55Tape〈q′〉〈a′〉

Jump(X) =
⋃

q

[(
X ∩ Counter 55Tape`

〈q〉

)
+ (1000 � 〈q〉)(00)+ + 〈q〉

]

∩ (Counter∪Counter′)55Tape〈q〉

Carry(Y) =
[((

Y ∩ {0, 1}∗2{0, 1}∗ 55Tape
)

+ 10
∗ ∩ {0, 1}∗3{0, 1}∗ 55Tape

)

+
(
10 � 3

)
0
∗
]
∩

(
{0, 1}+ ∪ {0, 1}∗2{0, 1}∗

)
55Tape

In addition, define the set of final configurations of the machine:

Final = Counter 55Tape〈qfin〉

The construction uses two variables, X and Y . Either variable represents the set of
proper configurations of the machine, starting from which the machine accepts. The vari-
able X represents configurations belonging to the set Counter 55Tape, while Y represents
configurations from (Counter∪Counter′)55Tape, in which the counter may contain one
carry digit 2 that needs to be propagated to higher positions. The equations, using the
above auxiliary functions, are as follows:

X = Final∪Step(X) ∪
(
Y ∩ Counter 55Tape

)
(3.1)

Y = Jump(X) ∪ Carry(Y) (3.2)

In order to determine the least solution of this system, let us first establish some prop-
erties of the auxiliary functions.

The first quite elementary property is their distributivity over infinite union, which
allows us to study these operations as operations on individual numbers, and then infer
their action on sets of numbers.

Lemma 1 (Distributivity). Each function f ∈ {Moveq,a,q′,a′ , Jump,Carry} is distributive
over infinite union, in the sense that f(S) =

⋃
n∈S f({n}) for every S ⊆ N0.

This follows from the fact that each of these expressions consists of intersections with
constant sets, sums with constant sets and unions. On the other hand, note that if an
expression contains intersections or sums of multiple expressions involving X, then it is not
necessarily distributive over infinite union; in particular, Step need not be distributive.

One of the main technical devices used in these functions is addition of a constant set
of numbers with |Σ|-ary notation u0∗ (that is, a set

{
m · |Σ|i

∣∣ i > 0
}
) with one, two or

three non-zero digits in u. The following lemma establishes that this addition can never
rewrite the double markers 55, that is, every sum in which these markers are altered does
not represent a valid tape contents. This means that every such addition manipulates the
counter and the tape separately, and the changes do not mix.

Lemma 2 (Marker preservation). For every x, x′ ∈ {0, 1, 2, 3}∗ \ 0Σ∗ and w,w′ ∈ Tape, if
x′
55w′ ∈ x55w + (Σ3 ∪ Σ2 ∪ Σ)0∗, then |w| = |w′|.

380 A. JEŻ AND A. OKHOTIN

The next statement describes the operation of Carry: applied to a configuration with
the counter having a single carry digit 2, Carry changes this digit to 0 and increments the
next digit, making it 1 or 2. Note that all operations are in |Σ|-ary notation. The tape
contents is not altered.

Lemma 3 (Carry propagation). For every x ∈ Counter′ and for every w ∈ Tape,
Carry

(
{x55w}

)
= {x′

55w}, where x′ ∈ Counter∪Counter′ and Value(x′) = Value(x).
If x′ ∈ Counter′, then the position of 2 in x′ is greater than the position of 2 in x.

According to Lemma 3, Carry moves the carry by one position higher. The next lemma
shows that sufficiently many iterations of Carry always eliminate the carry digit: given a
counter with the notation x = x̃01k−1

2, Carryk transforms it to x = x̃10k−1
0.

Lemma 4 (Termination of carry propagation). For every x ∈ Counter∪Counter ′ and
w ∈ Tape there exists x′ ∈ Counter and k > 0, such that Carryk(x55w) = x′

55w and
Value(x) = Value(x′).

The next lemma states the functionality of Jump, which can be described as follows. If
Jump is applied to a configuration in which the head scans over the first symbol, then the
result of the operation is the previous configuration, in which the head is at the right-most
position beyond the end of the string, while the value of the counter x is greater by 1.

Lemma 5. Let x = x̃c ∈ Counter with c ∈ {0, 1} and w = 〈q〉w̃0 ∈ Tape with q ∈ Q, that
is, w encodes a configuration with the head over the first symbol. Then Jump(x55w) =
{x̃(c + 1)550w̃〈q〉}.

For any string α ∈ Σ∗ of a different form, Jump(α) = ∅.

It follows from Lemma 5 that Jump is a reversible function, that is, the previous
configuration given by Jump(x55w) corresponds to x55w only. This is stated as follows:

Lemma 6. Let x′
55w′ ∈ Jump(x55w). Then w′ = 0w̃〈q〉 and w = 〈q〉w̃0 for some state q,

and Value(x′) = Value(x) + 1.

Let us now proceed with specifying the action of Move, which represents symbol manip-
ulation, head movement and state change of a Turing machine according to the membership
of states and symbols specified in δ. Generally, when Moveq,a,q′,a′ is applied to a valid con-
figuration, it computes the preceding configuration of the machine. This configuration is
unique because of the restriction built in Moveq,a,q′,a′ in its subscripts. The symbols and
states used as the subscript restrict its applicability to the following case: in the current
configuration the machine is in state q and the symbol to the left rewritten at the previous
step is a, while in the previous configuration the machine was in state q ′ and scanned the
symbol a′. For all other configurations and in all other cases, the function produces the
empty set.

Lemma 7. Let q, q′ ∈ Q and a, a′ ∈ Γ. Let x ∈ Counter and w = ŵ0〈a〉〈q〉w̃ ∈ Tape for
some ŵ ∈ (0〈Γ〉)∗ and w̃ ∈ (〈Γ〉0)∗. Then Moveq,a,q′,a′(x55w) = x55ŵ〈q′〉〈a′〉0w̃.

For every string α ∈ Σ∗ of a different form, Moveq,a,q′,a′(α) = ∅.

Similarly to Lemma 6, reversibility of Moveq,a,q′,a′ directly follows from Lemma 7.

Lemma 8. Let x55w ∈ Moveq′,a′,q,a(x
′
55w′). Then w = ŵ〈q〉〈a〉0w̃ and w′ = ŵ0〈a′〉〈q′〉w̃

for some ŵ ∈ (0〈Γ〉)∗ and w̃ ∈ (〈Γ〉0)∗, and x = x′.

COMPLEXITY OF SOLUTIONS OF EQUATIONS OVER SETS OF NATURAL NUMBERS 381

The flow control of the alternating Turing machine includes existential and universal
nondeterminism in the corresponding states, and a single step is in fact a disjunction or
conjunction of several transitions as specified in Move. This logic is transcribed in the
expression Step(X), which computes the set of all previous configurations, from which ma-
chines in a universal state make all their transitions to configurations in X and machines in
an existential state make at least one of their transitions to some configuration in X. This
implements one step of the computation of the machine, backwards.

Lemma 9. Let x ∈ Counter and w ∈ Tape, let q ∈ Q be the state encoded in w. Then
x55w ∈ Step(X) if and only if

• the configuration w has the head not in the position beyond the right-most symbol,
that is, w = ŵ〈q〉w̃0 for some ŵ, w̃ ∈ Σ∗.

• if q ∈ QE, then for some string w′ encoding next configuration of the ATM there
holds x55w′ ∈ X.

• if q ∈ QA, then for every string w′ encoding next configuration of the ATM there
holds x55w′ ∈ X.

Having established the formal meaning of the auxiliary operations, let us return to
the equations. The equation for X states that a configuration leads to acceptance if and
only if it is accepting itself (Final), or one can directly proceed from it to a configuration
leading to acceptance (Step(X)), or that it is a configuration obtained in Y . The equation
for Y specifies circular rotation of the tape by Jump(X) and implements iterated carry
propagation as in Lemma 4 by a self-reference Carry(Y). Altogether, the least solution of
these equations corresponds to the computation of the machine as follows:

Lemma 10. Let (LX , LY) be the least solution of the equations (3.1)–(3.2).

⇒© Let x ∈ Counter, w ∈ Tape and x55w ∈ LX . Then M accepts starting from the
configuration represented by w.

⇐© Conversely, if M accepts starting from the configuration represented by w ∈ Tape,
and the longest path in the tree of the accepting computation has length `, then for
each x ∈ Counter with Value(x) > `, there holds x55w ∈ LX .

It remains to observe that the number of steps of the machine is exponentially bounded,
hence the acceptance of a word by the machine is represented by the following number in
the least solution of the constructed system:

Main Lemma. ATM M accepts a string a1 . . . an ∈ Ω+ if and only if

1
2+log n+log(|Γ|)n+log(|Q|)

55〈q0〉〈a1〉0〈a1〉0 . . . 〈an〉0 ∈ LX .

Proof of Theorem 3.1. The system of equations constructed above has an EXPTIME-
complete least solution.

To see that the least solution of every system is in EXPTIME, it is sufficient to represent
it as a conjunctive grammar over a unary alphabet. Then, given a number n, its membership
in the least solution can be tested by supplying the string an to a known cubic-time parsing
algorithm for conjunctive grammars [12]. Its time is cubic in n, hence exponential in the
length of the binary notation of n.

382 A. JEŻ AND A. OKHOTIN

Having established a solution complexity theorem for equations over sets of numbers,
let us discuss its implications on conjunctive grammars over a one-letter alphabet.

Every conjunctive language is in P [12], and some conjunctive languages over a multiple-
letter alphabet are known to be P-complete [14]. The case of a unary alphabet is special, as it
is known that no sparse language, in particular no unary language, can be P-complete unless
DLOGSPACE = P [11, 1], that is, unless the notion of P-completeness is trivial. However,
from Theorem 3.1 one can infer the following result slightly weaker than P-completeness:

Corollary 3.2. There exists a EXPTIME-complete set of numbers S ⊆ N, such that the

language L = {an|n ∈ S} of unary notations of numbers from S is generated by a conjunctive

grammar.

Note that for every unary language generated by a conjunctive grammar, the corre-
sponding set of numbers is in EXPTIME. The set constructed in Corollary 3.2 can thus be
regarded as the computationally hardest among unary conjunctive languages.

A simple consequence of Corollary 3.2 refers to the complexity of parsing for conjunctive
grammars.

Corollary 3.3. Unless PSPACE = EXPTIME, there is no logarithmic-space parsing algo-

rithm for conjunctive languages over a unary alphabet.

4. The membership problem

Consider the general membership problem for our equations, stated as follows: “Given
a system Xi = ϕi(X1, . . . , Xm) and a number n in binary notation, determine whether n
is in the first component of the least solution of the given system”. Its complexity is now
easy to establish.

Theorem 4.1. The membership problem for resolved systems of equations over sets of

numbers with operations {∪,∩,+} is EXPTIME-complete.

Proof. Membership in EXPTIME. The algorithm begins with representing the given system
as a conjunctive grammar over a unary alphabet, with a linearly bounded blow-up. The
given number n is represented as a string an with an exponential blow-up. Then it is suf-
ficient to apply the known polynomial-time algorithm for solving the membership problem
for conjunctive grammars [13].

The EXPTIME-hardness of the general membership problem immediately follows from
Theorem 3.1 by fixing the system of equations.

Let us conclude by comparing the complexity of the membership problem for expres-
sions, circuits and equations, as well as the families of sets representable by their solutions.
All known results are given in Table 1.

The new complexity results for the equations over sets of numbers naturally fit into the
framework of the existing research. On the other hand, the new results on the expressive
power of equations come in a sharp contrast with the previous work: these equations can
represent non-trivial sets of numbers, which are computationally as hard as the general
membership problem for this class.

It remains an open question, what is the exact family of sets of natural numbers defined
by these equations. For instance, is it possible to represent the set of all primes?

COMPLEXITY OF SOLUTIONS OF EQUATIONS OVER SETS OF NATURAL NUMBERS 383

Representable sets Membership problem
expressions with {∪,+} Finite NP-complete [17]
circuits with {∪,+} Finite NP-complete [4, 9, 10]
equations with {∪,+} Ultimately periodic NP-complete [4]
expressions with {∪,∩,+} Finite PSPACE-complete [17]
circuits with {∪,∩,+} Finite PSPACE-complete [9, 10]

equations with {∪,∩,+}
(EXPTIME, contains

EXPTIME-complete set
EXPTIME-complete

Table 1: Comparison of formalisms over sets of integers.

References

[1] J.-Y. Cai, D. Sivakumar, “Sparse hard sets for P: resolution of a conjecture of Hartmanis”. Journal of

Computer and System Sciences, 58:2 (1999), 280–296.
[2] A. K. Chandra, D. C. Kozen, L. J. Stockmeyer, “Alternation”, Journal of the ACM, 28:1 (1982) 114–133.
[3] S. Ginsburg, H. G. Rice, “Two families of languages related to ALGOL”, Journal of the ACM, 9 (1962),

350–371.
[4] D. T. Huynh, “Commutative grammars: the complexity of uniform word problems”, Information and

Control, 57:1 (1983), 21–39.
[5] A. Jeż, “Conjunctive grammars can generate non-regular unary languages”, DLT 2007 (Turku, Finland,

July 3–6, 2007), LNCS 4588, 242–253.
[6] A. Jeż, A. Okhotin, “Conjunctive grammars over a unary alphabet: undecidability and unbounded

growth”, Computer Science in Russia (CSR 2007, Ekaterinburg, Russia, September 3–7, 2007), LNCS
4649, 168–181.

[7] M. Kunc, “The power of commuting with finite sets of words”, Theory of Computing Systems, 40:4
(2007), 521–551.

[8] M. Kunc, “What do we know about language equations?”, Developments in Language Theory (DLT
2007, Turku, Finland, July 3–6, 2007), LNCS 4588, 23–27.

[9] P. McKenzie, K. Wagner, “The complexity of membership problems for circuits over sets of natural
numbers”, 20th Annual Symposium on Theoretical Aspects of Computer Science (STACS 2003, Berlin,
Germany, February 27–March 1, 2003), LNCS 2607, 571–582.

[10] P. McKenzie, K. Wagner, “The complexity of membership problems for circuits over sets of natural
numbers”, Computational Complexity, 16 (2007), to appear.

[11] M. Ogihara, “Sparse hard sets for P yield space-efficient algorithms”, Chicago J. Theor. Comput. Sci.,
1996.

[12] A. Okhotin, “Conjunctive grammars”, Journal of Automata, Languages and Combinatorics, 6:4 (2001),
519–535.

[13] A. Okhotin, “A recognition and parsing algorithm for arbitrary conjunctive grammars”, Theoretical

Computer Science, 302 (2003), 365–399.
[14] A. Okhotin, “The hardest linear conjunctive language”, Information Processing Letters, 86:5 (2003),

247–253.
[15] A. Okhotin, “Decision problems for language equations with Boolean operations”, Automata, Languages

and Programming (ICALP 2003, Eindhoven, The Netherlands, June 30–July 4, 2003), LNCS 2719, 239–
251.

[16] A. Okhotin, “Unresolved systems of language equations: expressive power and decision problems”,
Theoretical Computer Science, 349:3 (2005), 283–308.

[17] L. J. Stockmeyer, A. R. Meyer, “Word problems requiring exponential time”, STOC 1973, 1–9.
[18] K. Yang, “Integer circuit evaluation is PSPACE-complete”, Computational Complexity 2000, 204–211.

384 A. JEŻ AND A. OKHOTIN

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/.

