Thermodynamics/Optics

• I hate calculus!

• I hate calculus!

Overview of Last Lecture

- Foundation of physics, classical mechanics
- Copernican Revolution
- Galileo/Newton experimentation and theory
- Social aspects religion, economy, and intellectual society
- $\frac{dx}{dt}$
- Lagrange/Hamilton determinism

Structure for this Lecture

- Philosophy
- Thermodynamics
 - Caloric vs. kinetic theory
 - Energy
 - Time/Entropy
- Optics
 - Fermat
 - Wave vs. Particle
- Next lecture Electricity/Magnetism/Special Relativity

Fun and Games!

Fun and Games!

- Telephone Charades
 - Send message down the line (telephone)
 - Only acting, no talking (charades)
 - Try to be as accurate as possible
 - Find where if any problem occurs
 - Please don't cheat

Telephone Charades

- Communication breakdown
 - Commensurability in physics (ability to understand each other)
 - Conflicting paradigms
 - Arise in explaining experimental results
- This class

What Ever Happened to F = mv?

- *mv* is the momentum of an object
- Conservation of momentum
 - Collisions preserve momentum
 - Inelastic/Elastic sticking vs. bouncing

A Quick Test!

- Suppose I have two metal spheres which both have a mass of 10 kg. The first ball has a velocity of 10 m/s and hits the second ball which is initially at rest.
 - What happens in an inelastic collision?
 - What happens in an elastic collision?

A Quick Test!

- Suppose I have two metal spheres which both have a mass of 50 kg. The first ball has a velocity of 10 m/s and hits the second ball which is initially at rest.
 - What happens in a perfectly inelastic collision?
 - What happens in a perfectly elastic collision?
- What really happens?

Thermodynamics

- Some big questions
 - What is temperature? How do we measure temperature?
 - What is heat?
 - How does heat flow?
 - What is matter made of?

Early Beginnings

- Joseph Black (1728-1799)
 - Scottish chemist, water analogy to heat
 - Go back to Heraclitus (remember this guy?)
 - Heat is a substance, fluid
 - Caloric theory
- Count Rumford (1753-1814)
 - Loyalist soldier born in Woburn, MA
 - Royal Institution popularize science
 - Soldier uniforms, drill cannons
 - Heat is motion
- Humphrey Davy ice

Caloric Theory Popular

• Why?

- Can explain thermal radiation, latent heat
 - Kinetic theory cannot yet
- Can be quantitatively backed
- Joseph Fourier (1768-1830)
 - The heat equation
 - Series/Transform
 - Sum of sines!!!!!

$$\frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2},$$

Technological Applications

- James Watt steam engine
 Industrial Revolution!!!
- Sadi Carnot Efficiency $\eta = 1 \frac{T_c}{T_H}$
 - Carnot cycle

Conservation of Energy

- Three major players
- James Prescott Joule (1818-1889)
 - Brewery, very precise (1845)
 - Rotating paddles in water electric motor
- Robert Mayer (1814-1878)
 - Rough life, purely theoretical paper (1845)
 - John Tyndall's warpath
- Hermann von Helmholtz (1821-1894)
 - First law of thermodynamics (1847)

A Brief Primer on Energy

- Work $W = Fd \cos \theta$
- Potential energy U, V
 - "Stored" energy
 - Chemical, electrical, gravitational
 - Defined as $-\frac{dU}{dx} = F$
- Kinetic energy *K*, *T*
 - "Living force"
 - $\frac{1}{2}mv^2$

Second Law of Thermodynamics

- From Carnot's efficiency, $\eta = 1 \frac{T_c}{T_H}$
 - Cannot use same reservoir!
 - One way to state: "Heat cannot flow from cold to hot"
 - Clausius introduce entropy (transformation)
 - One way to state: "Entropy can only increase or stay the same"
 - Defines a change in entropy as $dS = \frac{dQ}{T}$
- Arrow of time!

$$rac{\mathrm{d}oldsymbol{p}}{\mathrm{d}t} = -rac{\partial\mathcal{H}}{\partialoldsymbol{q}} \ \ , \ \ \ rac{\mathrm{d}oldsymbol{q}}{\mathrm{d}t} = +rac{\partial\mathcal{H}}{\partialoldsymbol{p}}$$

Probabilistic Revolution!

- Reviving the kinetic theory
- James Clerk Maxwell (1831-1879)
 - Introduce probability/ensembles
 - Use Hamiltonian mechanics and trace path of system
- Gibbs (1839-1903)
 - Popularize ideas of entropy/statistical mechanics
- Ludwig Boltzmann (1844-1906)
 - Rough life, Mach/Ostwald

•
$$S = -k_B \sum p_i \ln p_i = k_B \log W$$

•
$$\frac{1}{T} = \left(\frac{dS}{dU}\right)_{U}$$

Brief Questions

- Two state system
 - Suppose you had *N* particles and two separate energy levels. What happens when you raise the temperature to an arbitrarily high amount and then let the system equilibrate?
- Loschmidt's paradox
 - Why can't you run it backwards?
- Zermelo's paradox
 - Eventually it will come back to the initial configuration
- Maxwell's demon
 - Hyper intelligent demon with a trap door

Information Theory!

- Thermodynamic entropy • $S = -k_B \sum p_i \ln p_i$
- Shannon entropy (1948)
 - $S = -\sum p_i \log p_i$
- Explaining Maxwell's demon
 - Leo Szilard (1929)
- How is information physical???

A Brief Look at Optics

- Early optics the refinement of lens creation and telescopes plays a major role in astronomy
 - Galileo/Newton refracting/reflecting telescope
- The main debate: particle or wave?
 - Newton particle, also known as corpuscular theory
 - Huygens wave (but also particles)
 - Descartes vortices

Micrographia (1665)

Early Discoveries

- Snell's law
 - Light refracts (bends) when entering a different medium
 - Problem: all three theories had mathematically valid explanations for phenomenon
 - Newton light increases in velocity in media
 - Huygens light decreases in velocity
- Fermat's principle
 - Light takes the shortest time length path
 - Optimization problem

Math Question

Light is a Wave!

- Thomas Young (1773-1829)
 - Double-slit experiment (1801)
 - Interference waves collide and destroy each other
- Fizeau experiment (1851)
 - Light moves slower in water
 - Partial aether drag

Arago Spot

