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1 Why real numbers?

Suppose we only know rational number.
Projectile example: y = 20 − 10x2, solve for x. Is there solution on Q? If one has a timer, he may try to
approximate the time with multiple trails, and find that the resulting sequence comes very close to a number.
Nevertheless, there’s no rational number satisfying that condition.

Theorem: There’s no rational number q such that q2 = 2
That shows Q is incomplete, even though it is dense. In fact, one can prove that between any intervals [a,b]
there is infinitely many rational numbers. In fact, the famous theorem by Cantor (1874?) shows that, given
any interval [a,b], the probability of choosing a rational number is 0. It doesn’t mean we will never be able to
choose a rational number in the interval; it means in the long run, the will be far more irrational numbers are
chosen rather than rational numbers.

That requires a more powerful set: the real number, to accomodate for all the missing stones from Q.

2 Basic ingredients

Instead of building directly from Q, it’s best to work abstractly. The advantage is that, we know for sure what
we assume and what we don’t assume. Real numbers possess many unique properties (such as metric space,
compactness, etc.), and sometimes it’s confusing whether a property comes from which.

2.1 Ordered set

Definition: An order in S is a relation, often denoted by <, satisfying two properties
- For any x, y ∈ S, exactly one of three conditions holds: x < y, x = y, y < x (the last one is sometimes written
as y > x, but we haven’t defined >!)
- If x < y and y < z, then x < z
The notation ≤ is also used to indicate x < y or x = y.

Definition: An ordered set is a set S with a defining order
- Q is an ordered set: define r < s if s− r is a positive number
- C is an ordered set: define a + bi < c + di if a < c, or a = c and b < d. This is often called the dictionary
order, and most of the sets can be forced to be this order.

You may notice in a finite ordered set, you can always find the largest and smallest element. However, in an
infinite set, this is often not the case. We need another useful definition

Definition: Suppose E ⊂ S and E is not empty. If there is a number b ∈ S such that x ≤ b for every x ∈ S,
we call b be an upper bound of S.

Definition: Suppose E ⊂ S and E is not empty. The number b ∈ S is called the least upper bound of S if it
satisfies two properties
- b is an upper bound of E
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- There’s no c < b such that c is an upper bound of E.
Denote b = supE (comes from the word supremum). Similarly, we have the concept of infimum.

Example: The set G = {0, 1/2, 2/3, 3/4, ..} obviously has no largest element, but is bounded above by any
element x ≥ 1. In fact, we can show supG = 1. Also, the supremum/infimum can coincide with the mini-
mum/maximum of the set; for example, inf G = 0 which is also the smallest element of G.

Definition: An ordered set S has the least upper bound property, if for any E ⊂ S, E is bounded above, supE
exists and is in S.
The set Q does not have the least upper bound property: take the set

{
x ∈ Q;x2 < 2

}
2.2 Field

A field is a set F, equipped with two operations: addition and multiplication, satisfying the following axioms
A: Addition axioms
- A1: If x ∈ F, y ∈ F then x+ y ∈ F
- A2: Commutative: x+ y = y + x (sometimes it is called an abelian group with addition operation)
- A3: Associative: (x+ y) + z = x+ (y + z)
- A4: F contains an element 0: 0 + x = x+ 0 = x for all x ∈ F
- A5: For every x ∈ F there exists an element y ∈ F such that x + y = 0. This element is often denoted as
(−x).

M: Multiplication axioms
- M1: If x, y ∈ F then xy ∈ F
- M2: Commutative: xy = yx
- M3: Associative: (xy)z = x(yz)
- M4: Identity: F contains element 1 such that 1x = x1 = x for any x ∈ F
- M5: Inverse: for x ∈ F and x 6= 0 there exists an element y ∈ F such that xy = yx = 1. This is often denoted
as 1/x or x−1

D: Distributive law (linking addition and multiplication together)
- D1: x(y + z) = xy + xz for all x, y, z ∈ F

From these basic axioms, we can prove all the main property that you would expect for a field. I will describe
a few (without proof), those are interested may consult the Rudin’s book:
- If x+ y = x+ z then y = z. Corollary: ff x+ y = x then y = 0 - The element 0 and 1 is unique
- If x 6= 0 and y 6= 0 then xy 6= 0

2.3 Ordered field

Definition: An ordered field is a field F, equipped with an order satisfying two conditions:
- If y < z then x+ y < x+ z
- If x > 0, y > 0 then xy > 0
Note: C is not an ordered field. One standard mistake is to ”force” it to be a field by dictionary order. That
results in an ordered set, but not ordered field (proof).

3 Dedekind’s construction

We start from Q and we want to construct R while keeping all the properties of an ordered field, and we need
to show the least upper bound property. But we need to be careful that we don’t assume any properties of R.
For example, here’s one faulty example: X√2 =

{
y ∈ Q; y <

√
2
}

. What’s wrong? We don’t have
√

2, let alone
saying its position! Of course, after we construct it will automatically fit in. But right now, it’s a logical fault!
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3.1 Cut

The elements of R will be subsets α of Q satisfying the following conditions
1. α is not empty and is not Q
2. If x ∈ α, then y ∈ α for all y < x
3. If x ∈ α, then x < y for some y ∈ α
Condition 1 eliminates ”infinity” element; condition 2 guarantees all elements less than x is included; condition
3 guarantees α has no largest element.

3.2 Order

Definition of order: a < b
α < β if α ⊂ β
Check it is an ordered set.
Step 3: Least upper bound property
Step 4: Definition for addition
α+ β is the set of all sums r + s for r ∈ α and s ∈ β
Define 0∗ is the set of negative rational numbers. Show properties of α+ β
Step 5: First condition for ordered field
If α+ β < α+ γ then β < γ Step 6: Multiplication, part 1
We may try directly the above definition as we did in addition. But trouble occurs (example: (−2).(−2)
will include all positive numbers). Therefore, it’s necessary to detour, starting with multiplication on positive
numbers.
Define αβ be the set of all p ≤ rs for r ∈ α, s ∈ β, r ≥ 0, s ≥ 0
Define 1∗ be the set of all q < 1 Step 7: Multiplication, part 2
It finishes both multiplication and distribution law
Step 8: Association with Q
We shall show Q is actually a subset of R by associating each member of Q a corresponding set of R. Phew!
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