1. Notes from lecture 1

Remark 1. We use the following notation:

- (1) \mathbb{Q} set of rational numbers
- (2) \mathbb{R} set of real numbers
- (3) Let E be a subset of an ordered set X, that is $E \subset X$. Then if $x \in X$ is the least upper bound of E, we say:

 $x = \sup E$

that you should read as "x is the supremum of E". From the other hand, if $x \in X$ is the greatest lower bound of E, we say:

$$x = \inf E$$

that you should read as "x is the infimum of E".

Definition 2. Given two sets X and Y, the Cartesian product of X and Y is the set of all ordered pairs of elements of X and Y, that is:

$$X \times Y = \{(x, y) \text{ s.t. } x \in X, y \in Y\}$$

Definition. Given two sets X and Y, a binary relation \mathcal{R} over X and Y is a subset of the Cartesian product $X \times Y$, that is:

$$\mathcal{R} \subset X \times Y$$

If we specify just one set, say X, we use the convention $\mathcal{R} \subset X \times X$

• If $x \in X$ and $y \in Y$, we say that x is related to y, in symbols $x\mathcal{R}y$, if and only if:

 $(x,y) \in \mathcal{R}$

• We say that x and y are not related, in symbols $x \neg \mathcal{R}y$, if and only if:

 $(x,y) \notin \mathcal{R}$

I shall give you an alternative definition of order which you might find easier to work with.

Definition 3. Given a set X, an **order** relation \mathcal{R} on X is a binary relation such that

- (1) For any $a \in X$, $a\mathcal{R}a$
- (2) For any $a, b \in X$, if $a\mathcal{R}b$ and $b\mathcal{R}a$ then a = b
- (3) For any $a, b, c \in X$, if $a\mathcal{R}b$ and $b\mathcal{R}c$ then $a\mathcal{R}c$

Example 4. Let $X = \mathbb{R}$ and consider a binary relation \mathcal{R} over X defined as follows:

For any $a, b \in X$, $a\mathcal{R}b$ if and only if a - b is a non negative number

In this particular case, \mathcal{R} coincides with the usual notion that you have of \geq , that is "greater or equal to". Let's verify that \geq is indeed an order relation. It has to satisfy the three proprieties that I have just mentioned

- (1) Clearly for any real number $x \in \mathbb{R}$, we have $x \ge x$. So $x\mathcal{R}x$ and the property is satisfied
- (2) If $x \ge y$ and $y \ge x$ then the only possibility is that x = y. Also the second property is satisfied

(3) If $x \ge y$ and $y \ge c$ then it must be $x \ge c$. Also the third property is satisfied. Hence \ge is an order relation

Remark 5. In class, I have indicated a general order relation with the symbol >. This should not be misleading. In this context, you should not think of it as "strictly greater of". It is just a relation \mathcal{R} .

Definition. Let *E* be a subset of an ordered set *X*, that is $E \subset X$.

- Then x ∈ X is the least upper bound of E if and only if:
 (1) x is an upper bound for E
 - (2) If y < x and $y \in X$, then y is not an upper bound for E.
- From the other hand, $x \in X$ is the **greatest lower bound** of E if and only if:
 - (1) x is a lower bound bound for E
 - (2) If y > x and $y \in X$, then y is not a lower bound for E.

2. Problems

Problem 6. Let $A = \{1, 2, 3\}$ and $B = \{1, 2\}$.

- (1) Write down the elements of $A \times B$.
- (2) You can think of $A \times B$ as a set whose elements are ordered pairs. Let $C = A \times B$. Can you give an example of an order relation \mathcal{R} over C?

Problem 7. Let $X = \mathbb{R}$ and E be a subset of X, that is $E \subset X$. We define E as follows:

$$E = \left\{ q \in \mathbb{Q} \text{ s.t. } q < \sqrt{2} \right\}$$

where < means "strictly smaller than".

- (1) Give an example of upper bound for E. Is it unique?
- (2) What's the least upper bound of E? Show that it satisfies the definition of supremum.
- (3) What's the maximal element of E?
- (4) Give an example of lower bound for E. Is it unique?
- (5) What's the greatest lower bound of E? Show that it satisfies the definition of infimum.
- (6) What's the smallest element of E?

Now, let X be the set of rational numbers, that is $X = \mathbb{Q}$. Answer again questions (1) to (6)

Problem 8. Is the least upper bound unique (given that it exists)? Prove it.