Week 2 Homework:

1. You have 18 red marbles and 11 blue marbles. There are two actions you may perform:

- a) Throw 1 blue marble at the neighbor's dog.
- b) Trade 3 blue marbles for 3 red marbles.
- c) Trade 6 red marbles for 7 blue marbles.

How do you end up with only 1 red marble and 1 blue marble? Or prove that it is impossible.

2. Problem copyright 6.042J

Students are sitting in a n x n grid, when some are infected by BeaverFlu. Infected students are labeled with a X. The disease spreads in time steps. At each time step, a student is infected if he/she was already infected or he/she is adjacent (shares an edge) to at least two infected students.

For example:

Da	ıy 1		
		X	X
Х			
	Х		

Da	ıy 2		
		Х	Χ
Х	Χ		
Χ	X		

Day 3					
	Х	Х	Х		
Χ	X	X			
X	Х				

etc...

Prove this theorem: If fewer than n students in class are initially infected, the whole class will never be completely infected.