
Advanced Topics in Combinatorics Summer 2016

Lecture 1: Generating Functions
Lecturers: Kavish Gandhi and Timothy Ngotiaoco

1.1 Introduction

The generating function is a very powerful tool in combinatorics, and is the first one we will be introducing
in this class, mostly because it has applications throughout combinatorics and will be very useful in proving
results in Ramsey theory, partition theory, code theory, and more. It is also worth getting to know early,
because at first it may be difficult to gain intuition as to why we use them, and just how powerful a technique
they are.

Definition 1.1. An (ordinary) generating function for a series a0, a1, a2, . . . is the power series

a0 + a1x+ a2x
2 + · · ·+ anx

n + · · · =
∞∑
k=0

akx
k.

As an example, the generating function for the sequence 1, 2, 1, 0, 0, 0, 0, . . . is 1 + 2x+x2 = (1 +x)2, and
that for the sequence 1, 1, 1, 1, 1, 1, . . . is 1 +x+x2 +x3 + · · · = 1

1−x . Why is such a concept useful? In many
cases, even if there are infinitely many nonzero entries to the series, we can reduce this infinite power series
to a closed, finite form; and, as it turns out, we can add and multiply generating functions for different
power series in a meaningful, natural way (as well as divide, scale, differentiate, and any other meaningful
operations on polynomials). This becomes extremely useful, as we will show with examples later in the
lecture. A particular simple example of where you can see generating functions pop up is in the binomial
theorem, which I’m sure most of you know.

Theorem 1.2 (Binomial Theorem). For an integer n and variables x, y, (x+ y)n =

n∑
k=0

(
n

k

)
xkyn−k

Now, if y is a variable, note that this actually gives a generating function for some series; it is indeed finite,
but a generating function nonetheless. Now, at this point, it may seem that the connection to generating
functions is rather fuzzy and not useful, but it becomes more clear when you consider a generalized version
of the binomial theorem, in which the exponent is replaced by any real number. The details of why it is
defined this way are not worth getting into, but either way, the series becomes infinite and you can see why
generating functions are a natural way to express such a sum, and give a reason to examine the underlying

sequence. Note that a binomial
(
j
k

)
for a noninteger j and integer k is defined as j(j−1)(j−2)···(j−k+1)

k! .

Theorem 1.3 (Newton’s generalized binomial theorem). For any real number j and variables x, y, we have

that (x+ y)j =

∞∑
k=0

(
j

k

)
xj−kyk.

These are examples where you can see generating functions is everyday theorems, but why are generating
functions themselves a powerful tool in solving problems? To give some intuition behind this, I will give a
rather elongated problem in which generating functions turn out to be extremely useful: deriving a explicit
form for the Catalan numbers. This technique will prove invaluable in general for solving recurrences.

1-1

1-2 Lecture 1: Generating Functions

1.2 Catalan numbers: back to the quadratic formula?

Formally, the Catalan numbers are a sequence C0, C1, C2, . . . , Cn which can be described by the following

recurrence C0 = 1, Cn =

n−1∑
i=0

CiCn−1−i.

Now, this is a rather dry formalism and may seem like a contrived recurrence that comes out of nowhere,
but the Catalan numbers turn out to have a number of very interesting combinatorial applications. For
example, the Catalan numbers are exactly the number of ways to travel from (0, 0) to (n, n), only moving
unit distances up or to the right, and staying below the line y = x. Alternatively, the Catalan numbers are
exactly the number of ways to write a series of n open and close parentheses that make sense; i.e., there can
never be more close parantheses than open parentheses that have appeared before them (Why is this the
same as the previous definition?). The Catalan numbers turn out to appear in a lot of places1. As one might
imagine, because of the ubiquity of the Catalan numbers, it would be useful to derive an explicit formula
for them, rather than the rather cumbersome recurrence above. How are we going to do this? Generating
functions, of course!

What is this generating function? We know that in general, from our definition, the generating function

for the Catalan numbers is of the form

∞∑
i=0

Cnx
n. However, the utility of generating functions comes from

writing this is a more compressed form, and to this end we will use the recurrence relation of the Catalan
numbers.

Claim 1.4. The generating function C(x) for the Catalan numbers satisfies 1
xC(x)− 1 = C2(x).

Proof: We’re going to use our recurrence relation to rewrite the generating function. To this end, consider
a slight alteration to our traditional generating function, the sum

∞∑
n=0

Cn+1x
n (1.1)

Using our recurrence, (1.1) is equivalent to

∞∑
n=0

(
n∑
i=0

CiCn−i

)
xn. But note that this is actually just another

way of writing C(x)2, since each term of this sequence is exactly equivalent to those you would get if you
squared our original generating function. However, we also know that (1.1), if we multiply by x, is just our
original generating function, except without the C0x

0 term: in other words, it is 1
x (C(x)−C0) = 1

x (C(x)− 1.
Thus, since both of our derivations must be equal since they are from the same original equation, we have
that 1

x (C(x)− 1) = C(x)2, as desired.

Now comes the weird part. We know how to solve this: use the quadratic formula! In particular,

multiplying by x, we have that xC(x)2 − C(x) + 1 = 0, so, using our favorite formula, C(x) = 1±
√
1−4x
2 .

Now, which solution is it? To figure this out, as with many recurrences, we use the base case: C0 = 0.

Now, note that if we plug in x = 0 into our generating function

∞∑
n=0

Cnx
n, we should just get the C0 term,

since all others go to 0. However, if we plug in 0 into the positive square root, we get 2
0 = ∞, which is

clearly impossible (with the negative square root, we get 0
0 , which is indeterminate, and still could be the

correct solution). Thus, the solution we are looking for is the negative square root: our generating function

C(x) = 1−
√
1−4x
2x .

1For those interested, Richard Stanley, a famous combinatorist at MIT, wrote up a compendium of hundreds of interpreta-
tions/ways to derive the Catalan numbers which can be found here: http://www-math.mit.edu/~rstan/ec/catadd.pdf

http://www-math.mit.edu/~rstan/ec/catadd.pdf

Lecture 1: Generating Functions 1-3

From here, we’re going to use a theorem I mentioned earlier, Newton’s generalized binomial theorem (it
wasn’t just a digression!), to derive an explicit form generating function for the Catalan numbers.

Proposition 1.5 (Explicit form of Catalan Numbers 2). For all n ≥ 0, Cn = 1
n+1

(
2n
n

)
.

Proof: Using the generalized binomial theorem, we can write 1− (1−4x)1/2 as 1−
∞∑
n=0

(
0.5

n

)
(−4)nxn. The

first step to simplifying this is expanding
(
0.5
n

)
as 0.5(0.5−1)...(0.5−n+1)

n! . Multiplying this by (−4)n, we get

2(2− 4) . . . (2− 4n+ 4)

n!
(−1)n = −2(2)(6) . . . (4n− 6)

n!
= −2n(1)(3) · · · (2n− 3)

n!

= −2n(n!)(1)(3) · · · (2n− 3)

n! ·n!
= − (2n)!

n! ·n! ·(2n− 1)
= − 1

2n− 1

(
2n

n

)
.

Thus, 1 − (1 − 4x)1/2 = 1 −
∞∑
n=0

− 1

2n− 1

(
2n

n

)
xn =

∞∑
n=1

1

2n− 1

(
2n

n

)
xn. This gives us that C(x) =

1
2x

∞∑
n=1

1

2n− 1

(
2n

n

)
xn =

∞∑
n=0

1

4n+ 2

(
2n+ 2

n+ 1

)
xn. At this point, we are done, since Cn = 1

4n+2

(
2n+2
n+1

)
, al-

though we can, as it turns out, further simplify this (in a non-interesting way) to 1
n+1

(
2n
n

)
, the more common

explicit formula. Then, we are done!

1.3 Fibonacci: where did the
√
5 come from?

Now, the methods that we used to find an explicit form for the Catalan numbers are not unique! They can
generally be applied to solve many recurrences; multiply your given generating function by x, plug in the
recurrence, and derive an equation for the generating function in terms of it and x. Using the quadratic
equation or similar techniques, solve for the generating function as a fraction in terms of x, and use series
expansions (the binomial theorem, Taylor expansions that you’ll use in calculus, or others), to derive an
explicit form for the generating function and thus the sequence as a whole.

An example of this can be seen with the Fibonacci sequence, which satisfies F0 = 0, F1 = 1, Fn =

Fn−1 +Fn−2, for which we’ll write the generating function as F(x) =

∞∑
n=0

Fnx
n. Then, using our recurrence,

1
xF(x) =

∞∑
n=1

Fnx
n−1 =

∞∑
n=1

Fn−1x
n−1 +

∞∑
n=1

Fn−2x
n−1 = F(x) +xF(x) +F−1. Thus, we have that 1

xF(x) =

F(x)+xF(x)+1. Multiplying by x and solving for F(x), we get that F(x) =
x

1− x− x2
. We won’t do the

series expansion explicitly here, but it turns out that this series expansion gives that Fn = (1+
√
5)n−(1−

√
5)n

2n
√
5

!!

This is quite extraordinary 3, and may beg the question: where does such a result come from, intuitively?
The main explanation I can give is a shaky one; the roots of the polynomial in the denominator of the

generating function, 1 − x − x2 are exactly 1+
√
5

2 and 1−
√
5

2 , and it turns out that we do a partial fraction
decomposition based on these roots to derive the explicit form generating function.

2This proof is adapted from that of Mike Spivey
3At first it might not be entirely obvious that this gives a result that is an integer, until you realize that only the

√
5 terms

remain in the expansion of the numerator, and dividing by the
√

5 in the denominator gives at least a rational answer; showing
that this is an integer is another story.

1-4 Lecture 1: Generating Functions

Either way, from these two results, you can see that using generating functions to solve recurrences is an
extremely powerful tool, and coupled with characteristic polynomials, which we may talk about in a further
lecture, can solve most recurrences that you’ll encounter.

1.4 Generating Functions meet Cookies

A common problem involving generating functions involves the fact that their product is meaningful in
the context of a counting problem. In particular, let’s say that p0, p1, p2, p3, . . . are the number of ways of
choosing n elements from some set P , and q0, q1, q2, q3, . . . are the number of ways of choosing n elements

from some set Q. Clearly, we can write these sequences as P(x) =

∞∑
n=0

pnx
n and Q(x) =

∞∑
n=0

bnx
n. Now, let

rn be the number of ways of choosing n elements from either P or Q; clearly rn is just

n∑
i=0

piqn−i, which

gives that R(x) = Q(x)P(x). This identity shows that, in counting problems, we can multiply generating
functions associated with choosing objects from particular sets to get the combined solution.

This fact turns out to be extremely powerful. For example, consider the following problem involving
different types of cookies: oreos, milanos, chips ahoy, and thin mints (my favorite!).

Problem 1.4.1. Let p(n) be the number of ways to choose n oreos, milanos, chips ahoy, and thin mints,
subject to the following constraints: the number of oreos we take must be a multiple of 7, we can only take 6
milanos, we can take only 2 chips ahoy, and the number of thin mints must be odd. What is p(n) for all n?

To solve this problem, we will find a generating function for all of the different quantities we are choosing,
and then multiply them. Amazingly, this will give us a simple answer to what seems to be a pretty ugly
counting problem – generating functions eliminates all of the tediousness.

Solution: First, let the number of the oreos, milanos, chips ahoy, and thin mints, respectively, be a, b, c, d.
Then, our constraints are that a ≡ 0 mod 7, b ≤ 6, c ≤ 2, d ≡ 1 mod 2. We want to write generating
functions for all of these. Consider the oreos first; since a ≡ 0 mod 7, the associated “possibility” sequence
is 0, 7, 14, 21, 28. If we write our generating function as taking a 1 if a quantity is possible and 0 otherwise,

this gives us a generating function of A(x) =

∞∑
n=0

x7n =
1

1− x7
. Similarly, for milanos, the possibilities

are 0, 1, 2, 3, 4, 5, 6, giving a generating function of B(x) =

6∑
n=0

xn =
1− x7

1− x
. Deriving a similar generating

function for chips ahoy and thin mints gives C(x) = 1 + x and D(x) =

∞∑
n=0

x2n+1 =
x

1− x2
. Now, we use

the fact that we can multiply; the total possibilities generating function T (x) is just A(x)B(x)C(x)D(x) =
1

1−x7 · 1−x
7

1−x 1 + x · x
1−x2 ⇒ T (x) = x

(1−x)2 . To express this in typical form for a generating function, I will

take a small digression into calculus, using the fact that 1
1−x has expansion 1 + x + x2 + · · · and that the

derivative of 1
1−x is 1

(1−x)2 . Using the fact that derivatives apply equal well to power series (a fact that I

have not proven), this gives that 1
(1−x)2 can be written as

∞∑
n=0

(n + 1)xn, and thus our desired generating

function is x
(1−x)2 =

∞∑
n=1

nxn , which gives us that the number of ways to choose n cookies among the four

types is exactly n! Surprising, huh?

Lecture 1: Generating Functions 1-5

In general, this kind of method is very powerful when we are asked to choose items with respect to some
requirement, and can make our lives a whole lot easier when doing many types of combinatorics problems!

1.5 Exponential Generating Functions and Bell numbers

This section will introduce a new concept, called the exponential generating function. The main purpose of
this sort of function is to solve a counting problem in which our goal is to count the number of ways the n-
element set can take some structure; for ordinary generating functions, our objects were indistinguishable, in
some sense (although multiplication sometimes allowed us to change this), while with exponential generating
functions our objects are necessarily ordered. This is a rather vague prerogative, but it will become more
clear as we work through examples. Formally, an exponential generating function is defined as follows:

Definition 1.6. An exponential generating function for a series a0, a1, a2, . . . is the power series

a0 + a1x+
a2x

2

2
+
a3x

3

6
+ · · · =

∞∑
n=0

anx
n

n!

.

It helps to work through some trivial examples; if the series we are considering is 1, 1, 1, 1, . . ., then the

exponential generating function is just

∞∑
n=0

xn

n!
= ex, by definition. In many cases, however, it helps to think

of our series rather as a set; the first example described the general set, the second the trivial 0-element set.

If we want an even-sized set, or a series 1, 0, 1, 0, 1, . . ., then the exponential generating function is ex+e−x

2 ,
which is the definition of hyperbolic cosine. You can see that we’re getting some pretty weird functions,
and this helps in many cases in which recurrences are strange or the sequences/structures we are studying
require us to impose structure on a set.

The additive rule we used frequently for ordinary generating functions still applies to exponential gen-
erating functions, but this is just about the only rule that still applies. Multiplication is now different;

with ordinary generating functions, we used that rn =

n∑
i=0

piqn−i. However, if we multiply two exponen-

tial generating functions, we instead get that rn =

n∑
i=0

(
n

i

)
piqn−i; so, for future reference, when we say

that R(x) = P(x)Q(x) for exponential generating functions, this is the implication about the underlying
sequences.4

Using these definitions, I want to prove a famous formula for the Bell numbers Bn, which represent
the number of partitions of a set of size n. For example, for the three element set {x, y, z}, the possible
partitions are {{x}, {y}, {z}}, {{x, y}, {z}}, {{x}, {y, z}}, {{x, z}, {y}}, {{x, y, z}}, so B3 = 5. It turns out
that the Bell numbers satisfy the following explicit formula:

Theorem 1.7 (Dobinski’s Formula). The nth Bell number satisfies Bn = 1
e

∞∑
k=0

kn

k!
.

The fact that we have a infinite sum and a 1
e is a pretty good indicator in general that we’d be using

exponential generating functions, but we’ll start from scratch.

4For further reference, shifting to the left or right in the underlying sequence can no longer be achieved by substituting
xk; instead differentiating and integrating are the corresponding operations. We’ll try to avoid calculus as much as possible,
however.

1-6 Lecture 1: Generating Functions

Proof: First, let’s think about finding a recurrence relation for Bn+1. To do this, think about what happens
once we fix the subset that the first element of our set is in; it can be of any size n+1 ≥ j ≥ 1, for which there
are

(
n
j−1
)

ways of choosing the remaining j − 1 elements. Summing over all such j, we get the recurrence

Bn+1 =

n+1∑
j=1

(
n

j − 1

)
Bn+1−j , or as it is more typically written

n∑
k=0

(
n

k

)
Bk, if we switch around some indices.

From here, we are going to prove the following lemma, which will help us derive the desired result.

Lemma 1.8. The exponential generating function B(x) for the Bell numbers is ee
x−1.

Proof: The first step is a bit tricky, and involves the recurrence Bn+1 =

n∑
k=0

(
n

k

)
Bk that we just derived.

Remember that we can actually write the multiplication of two exponential generating functions p and q as

defining a new sequence such that rn =

n∑
k=0

(
n

k

)
pkqn−k. In the above, if we let pk = Bk and qk = 1∀k, and

the exponential generating function for the Bell numbers be B(x), we get that exB(x) = dB
dx . The ex comes

from the fact that this is the generating function for the sequence of all 1’s, which is the qk in this case,
and the B′(x) comes from the fact that our multiplication shifts the values in the series one over, which I
briefly mentioned was equivalent to differentiating (this is not so difficult to show, but we will not get into
it right now). Either way, from here, moving terms, we get that dB

B = exdx, which, integrating, gives that

ln(B) = ex +C ⇒ B(x) = ee
x+C . Using the base case that B(0) = B0 = 1, since this gives us the first term

of the series, we have that C = −1, so we get that the exponential generating function for the Bell numbers
is ee

x−1, as desired.

With this in hand, we now need to just expand this exponential generating function to get our desired
explicit formulation. In particular, B(x) = 1

ee
ex ; let’s first expand ee

x

. We’ll have to use the so-called

Maclaurin series (which you’ll learn in calculus) for ex =
∑
k=0

xk

k!
. Just plugging this in, this reduces our

generating function (disregarding the factor of 1
e for now) to

∞∑
k=0

(ex)k

k!
. From here, plugging in the Maclaurin

expansion for each individual term in the sum, we get that ekx =

∞∑
n=0

knxn

n!
, so the generating function can

be expanded out as

1

e

∞∑
k=0

∞∑
n=0

knxn

n! ·k!
=

1

e

∞∑
n=0

(∞∑
k=0

kn

k!

)
xn

n!
.

Since we of course also know that B(x) =

∞∑
n=0

Bnx
n

n!
, this gives that Bn = 1

e

∞∑
k=0

kn

k!
, as desired.

1.6 Let’s solve some HMMT Problems!

I thought we’d finish with some HMMT problems that are easily solvable using techniques we’ve addressed up
to this point. We’ve only begun to scratch the surface of generating functions and their utility, however, and
I’d recommend that, if interested, you delve more deeply into the additive, multiplicative, and differentiable
properties I briefly mentioned in this lecture, and read some resources that will help you develop an even
more rigorous theory of generating functions. Regardless, here goes!

Lecture 1: Generating Functions 1-7

Problem 1.6.1 (HMMT 2007, Problem 9, Combinatorics). Let S denote the set of all triples (i, j, k) of

positive integers where i+ j + k = 17. Compute
∑

(i,j,k)∈S

ijk.

Solution: This problem may look intimidating, but we’re going to solve for the general case, not just

i + j + k = 17!. Let sn =
∑

i+j+k=n

ijk. We want to find the generating function
∑
n≥0

snx
n. But note that

this generating function simply corresponds to cubing the generating function
∑
n≥0

nxn, because cubing this

function causes the coefficient of xn to be exactly the sum of the products of numbers that add up to n. Now,

let S =
∑
n≥0

nxn. Multiplying by x and subtracting this from S, we get that S−xS =
∑
n≥1

xn =
x

1− x
, by the

sum of a geometric series. This gives that S = x
(1−x)2 , and thus our generating function is

(
x

(1−x)2

)3
= x3

(1−x)6 .

From here, using the generalized binomial theorem, we have that (1− x)−6 =

∞∑
k=0

(
−6

k

)
xk(−1)k. Then, we

expand
(−6
k

)
= −6(−7)···(−6−k+1)

k! ; multiplying (−1)k gives this to be (k+5)···(6)
k! =

(
k+5
5

)
. Thus, our generating

function is x3
∞∑
k=0

(
k + 5

5

)
xk =

∞∑
k=3

(
k + 2

5

)
xk. Thus, we have that sk =

(
k+2
5

)
, so our desired answer is(

19

5

)
= 11628 , which is correct!

A problem that also falls easily in a similar way to generating functions arguments (quite similar to
problems that we’ve discussed), also from the HMMT, is the following. See if you you can solve it!

Problem 1.6.2 (HMMT 2008, Combinatorics, Problem 10). Determine the number of 8-tuples of nonnega-
tive integers (a1, a2, a3, a4, b1, b2, b3, b4) satisfying 0 ≤ ak ≤ k, for each k = 1, 2, 3, 4, and a1 + a2 + a3 + a4 +
2b1 + 3b2 + 4b3 + 5b4 = 19.

Now, finally, we end with a problem that doesn’t immediately look like it can be solved with generating
functions, but turns out to fall immediately to a generating function that we derived earlier in this lecture!

Problem 1.6.3 (HMMT 2008, Algebra, Problem 10). Evaluate the infinite sum

∞∑
n=0

(
2n

n

)
1

5n
.

Solution: Recall that we know the generating function for the Catalan numbers, which has the form
∞∑
n=0

1

n+ 1

(
2n

n

)
xn and 1−

√
1−4x
2x . If we multiply the Catalan number’s equation by x and take a derivative,

we get the generating function G(x) =

∞∑
n=0

(
2n

n

)
xn, which is what we are looking for (we simply want to

plug 1
5 into this generating function). Doing the same to our other known explicit form for the Catalan

generating function, we differentiate x
(

1−
√
1−4x
2x

)
= 1

2 (1−
√

1− 4x), which gives G(x) = 1√
1−4x . Plugging

in 1
5 , this gives an answer to the original problem of 1√

1− 4
5

=
√

5 , which is indeed correct!

1-8 Lecture 1: Generating Functions

1.7 Practice and Challenge Problems

1.7.1 Basic Problems

Problem 1.7.1. Find the generating function for the sequences 1, 1, 1, 1, 0, 0, 0, 0, . . . and 1, 7, 21, 35, 35, 21, 7, 1, 0, 0,
Simplify your answers as much as possible.

Problem 1.7.2. In how many ways can we make $1 from pennies, nickels, dimes, and quarters?

Problem 1.7.3. Prove that the generating function
∏
n≥1(1−xn)−µ(n)/n = ex, for µ(n) the Mobius function

defined as µ(1) = 1, µ(n) = 0 if n is divisible by the square of an integer greater than one, and µ(n) = (−1)r

if n is the product of r distinct primes. Hint: take logs! This is a beautiful, surprising result, which does
require some calculus.

Problem 1.7.4. Solve the linear recurrence an−4an−1 +4an−2 = 0, n ≥ 2, a0 = 1, a1 = 4, using generating
functions.

Problem 1.7.5. Using 1× 2 dominoes that we can place horizontally or vertically, in how many ways can
we tile a 2× n strip? These numbers may look familiar!

As a note, the following theorem is true in the general case:

Theorem 1.9 (Kasteleyn, 1961). Let Qm,n be a rectangular grid with m even. Then the number of 1 × 2

domino tilings of Qm,n is

0.5m∏
k=1

n∏
j=1

2

√
cos2

(
kπ

m+ 1

)
+ cos2

(
jπ

n+ 1

)
.

Isn’t that an astonishing result! We only ask you to prove the 2 × n case, but it’s still a fascinating
problem and one very approachable using generating functions (in fact, the proof of the above relies on
constructing such a generating function).

1.7.2 Competition Problems

Problem 1.7.6. (Romania 2003) How many n-digit numbers, whose digits are in the set {2, 3, 7, 9}, are
divisible by 3?

Problem 1.7.7. (IMO 1995) Let p be an odd prime. How many p-element subsets A of {1, 2, . . . , 2p} are
there, the sum of whose elements is divisible by p?

Problem 1.7.8. (IMO Shortlist 1998) The sequence 0 ≤ a0 < a1 < a2 < · · · is such that every nonnegative
integer can be uniquely expressed as ai + 2aj + 4ak, where i, j, k are not necessarily distinct. Find a1998.

1.7.3 Research Problems

Generating functions are ubiquitious in research, especially in enumerative combinatorics. I give an example
below of a problem that is actually related to a famous NP-complete problem that baffled researchers for
decades, for which the smaller cases can be solved using techniques of generating functions. See if you can
figure out how!5

Problem 1.7.9 (Subset sum problem). Given a list of integers, is there a nonempty subset of these integers
whose sum is a particular integer k? If so, find it.

5Note that this isn’t supposed to be especially elegant, but is a way that you could do this problem for small cases. Pretty
cool that something you can learn in high school is still used in modern algorithms problems!

	Introduction
	Catalan numbers: back to the quadratic formula?
	Fibonacci: where did the 5 come from?
	Generating Functions meet Cookies
	Exponential Generating Functions and Bell numbers
	Let's solve some HMMT Problems!
	Practice and Challenge Problems
	Basic Problems
	Competition Problems
	Research Problems

