
hello_world.asm
section​ .data

output:​ db ​'Hello World'​, ​0xa​, ​0xd ; declare output with endline

(0xa, 0xd)

outputLen:​ ​equ​ $-output ; declare the length of the output

section​ .text
global​ _start

_start:

mov​ ​eax​, ​1 ; eax = 1 = sys_write

mov​ ​edi​, ​1 ; edi = 1 = stdout

mov​ ​rsi​, output ; rsi = output = label you want to print

mov​ ​edx​, outputLen ; edx = outputLen = length of output

syscall

mov​ ​eax​, ​60 ; eax = 60 = sys_exit (exit the program correctly)

mov​ ​edi​, ​0 ; edi = 0 = no error (error code)

syscall

Program Template

section​ .data
; put variables where you know the value here

; you can also put variables where you don't know the value

 ; yet here if you give it a random value you’ll change later

section​ .bss
; put variables where you don't know the value yet here

; this section is optional if you gave your unknown variables a

random value to change later

section​ .text
global​ _start ​; this tells your program where to actually start. you

need to define _start

_start:

; put your actual code here

; some examples include getting user input (like for a hangman

letter), printing data,

; loops (everything except declaring variables from your goto c)

Common Mistakes when Writing Assembly

● Using a variable instead of a register
○ All the commands except for mov can only be used with registers. If you need a

value from a variable, move it into a register first. Then, move it back. Ex:

section​ .data
myVariable:​ ​db​ ​5

section​ .text
global​ _start

_start:

; CORRECT

mov ebx​, myVariable ; ebx = myVariable = 5

add ebx​, ​7 ; ebx = ebx + 7 = 12

mov myVariable, ​ebx ; myVariable = ebx = 12

; INCORRECT AND WON'T RUN

add myVariable, ​7 ; ERROR

● ‘Hardcoding’ your addresses
○ All addresses are random when you start your program. Therefore, you can

never know what they will be when you’re writing it. To access the address of a
variable, you always have to use the name you gave it.

section​ .data
myVariable:​ ​db​ ​'this is my variable'

section​ .text
global​ _start

_start:

; CORRECT

mov ebx​, myVariable ; ebx is the address of myVariable

mov ecx​, [myVariable] ; ecx is myVariable[0] or the

character 't'

; INCORRECT

mov ebx​, ​0x3239fa03 ; this looks like an address but

it’s just something I made up

mov ecx​, [​0x3239fa03​] ; this will either throw an error

or just move garbage into ecx

● Moving a larger register into a smaller register
○ If you look back at your diagram, you’ll notice that the registers like ax, bx etc are

smaller than eax and ebx. You’ll get an error if you try to move a big register into
a smaller one, like this:

_start:

mov​ ​ebx​, ​5
mov​ ​bx​, ​ebx ; ERROR, ebx doesn't fit in bx!

● Using too small a register for array access
○ NASM syntax doesn’t allow you to use anything smaller than a 32 bit register for

array access. That means you can only use registers that start with an e or an r

section​ .data
myVariable:​ ​db​ ​'hangman'

section​ .text
global​ _start

_start:

; CORRECT

mov​ ​ebx​, ​3
mov​ [myVariable + ​ebx​], ​'y' ; change hangman to hanyman

; INCORRECT - register is too small

mov​ ​bx​, ​3
mov​ [myVariable + ​bx​], ​'y' ; will throw an error

because bx is too small

