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I. COURSE INFO

Topics

Date
07/07 Complex number, Cauchy-Riemann Equation, Cauchy Theorem
14/07 Cauchy Theorem, Cauchy Integral Formula, ODE
21/07 Cauchy integral Theorem, Fourier Transform
28/07 Fourier Series, Fourier Transform, 1st order PDE
04/08 1st order PDE, Laplace Transform
11/08 Operator, ODE, Green’s Function
18/08 Green’s function of Wave Equation, Solution to Wave Equation

Contact

HSSP Phone: (617) 253-4882 E-mail: summer-hssp@mit.edu
YZ Phone: no please E-mail: yqzhu@mit.edu

II. Q & A

07/07
1. Do not know much about multivariable calculus
-This course only involves the very basics of multivariable calculus, such as partial derivative; there won’t be
Divergence theorem, Green’s theorem etc. There are lots of materials accessible on the Internet for multivariable
calculus, such as MIT’s OCW and Youtube videos. Besides, ask questions during lectures whenever it’s not clear to
you.

14/07
2. Don’t understand Double pole
-See the first two sections (A and B) of notes.

21/07
3. Why do some integrals go to zero?
There are two ways we can conclude an integral is equal to zero: using Cauchy theorem and not using Cauchy
theorem. For the second case, there are two possibilities: 1. Very large contour - change to polar coordinates and
take R to infinity; if the power of R is larger in the denominator the integral is zero; 2. Very small contour - change
to polar coordinates and take R to 0; if the power of R is larger in the numerator the integral is zero
I presume you are complaining about those ones in the example of branch cuts. In that case you have a very small
contour. The power of R is 1 in the numerator, the power of R is 1/2 in the denominator because 1+x and 1-x are

1 The materials of this document will be cumulative because I don’t want to create separate Latex files and you shouldn’t complain.
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both approximated to 1. If it is x instead of 1+x the integral will blow up.

4. Branch cuts and branch points
Branch points are points that don’t have unique values due to rotations. The purpose of branch cuts is to prevent
ambiguities; branch cuts are in walls that contours cannot cross. If the rotation is never completed or the contour
is never closed, there won’t be any ambiguity. With the purpose of branch cuts in mind, it might be easier to think
of how to make them. Branch cut can be finite or infinite as long as it serves its purpose. If there’s only one branch
point, it is always infinity; if there are two or three branch points the branch cut might be finite. However, we can still
close the contour if there is an infinite branch point. Regrading Cauchy integrals, the integrals that enclose branch
points are not well defined, so it cannot be evaluated; we must find a closed contour that doesn’t have any branch point.

5. Fourier Transform
We will talk more about it next time. See below (D) for physics-related topics.

28/07
6. Proof of Inversion theorem.
We assume that inversion theorem of Fourier transform holds if we can get the same function back using inversion. It
is fair as a mathematical assumption (maybe not as a philosophical assumption). There are a few steps in the proof
of inversion theorem: change the limits of integral from infinities to finite end points, apply the inversion theorem
to f̃(k), apply the Fourier transform to f(x) and take the finite end points to infinities. Following this scheme, you
should be able to prove the inverse transform.

7. Regarding Cauchy integral and Fourier transform:
1. Integrating in complex plane enables you to evaluate integrals (by hand) which you cannot do or have a very
hard time doing using calculus. 2. When doing Fourier transform whose nature is an integral, you might encounter
integrals that is easy to evaluate in complex plane and difficult in calculus. 3. With the help of Mathematica or
other softwares, you can evaluate almost all integrals without knowing Cauchy theorem, but almost all is not all,
I’ve done, in my problem sets for this class, many problems (set up by a skilful instructor) that are not solved by
Mathematica. So I think it is still good to know; it’s a nice exercise for brain as well.

8. Fourier Series [I am not sure if I understand your questions]
The idea of Fourier series is to write a function in terms of sines and cosines or equivalently complex exponentials. Only
differentiable functions with finite end points can be written in this form; a counterexample is ex. Fortunately, most
functions that are encountered in science and engineering have such properties. All the definitions are quite straight-
forward. I guess the confusing part is the differential operator story; we might as well discuss it in class if time permits.

9. Partial Differential Equation
We will continue next time.

10. Convolution
Convolution is an operation for two or more functions. We will talk more about it when it comes to Laplace transform.
It is also very common in probability theory, where you might want to convolve two probability distributions to
obtain the total probability distribution.

04/08
11. Partial differential equation’s Characteristic curves
Along the characteristic curves, the function either is constant for homogeneous PDE, or has a constant rate of
change for inhomogeneous rate of change.

12. What is inversion theorem of Laplace transform?
The function f(x), for example, is the description of an object in x space; the Laplace transform of it is the description
of the SAME object in a different language. The reason to perform Laplace, which is the also the reason to apply
any transform, is that some calculation is simpler in one space than the other. But after you obtain an expression in
terms of s, you might want to transform it back, into a space where you can interoperate more easily, or so to speak,
into a language which you are more familiar with. Then you need to use the inversion theorem.

13. Connection ODE and Laplace Transform
Laplace transform is generic method of solving Ordinary Differential Equations. The reason to perform Laplace,
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which is the also the reason to apply any transform, is to simplify the calculation. The Laplace transform of
derivatives can be related to the Laplace transform of the function itself (through integration by parting); this allows
you to calculate the explicit express of the Laplace transform of the function, from which you can obtain the solution
by applying inversion theorem.

11/08
14. Definition of Green’s function
We haven’t got to the point of defining Green’s function (but it is always a good idea to know the definition), so I
will say more on it next time. It is the function that yields a Dirac delta function when the PDE operator acts on in.
For Wave Equation, for example, the operator is ∂t −∇2, Green’s function is the function such that,

(∂t −∇2)G(x− x′) = δ(4)(x− x′)]

15. Delta function
I always refer to Dirac Delta when I say Delta function. It has infinitesimal width and infinite height, but its integral
is one.

16. ∇2, Laplace or Laplacian
I found out that Wikipedia calls it Laplace operator or Laplacian and Wolfram calls it Laplacian.

18/08
17. What is G?
The Green’s Function

18.U(~k, t) into formula?

Plug U(~k, t) into the Wave Equation and you should obtain: (−k2 + ∂2t )U(~k, t) = 0. We did this step last week; refer
to your note for detail.

19. G1, G2 substitution
In order to obtain the solution of wave equation, we substitute the Green’s functions into:

u(~x, t) =

∫
dn~x′[G1(~x− ~x′)a(~x′) +G2(~x− ~x′)b(~x′)]

Before substituting, make sure you have the right Green’s function.

20. Motion in String Theory
A string is still a string in String Theory, so it moves like a string. However, in order to have a relativistic string, we
need to incorporate time coordinate.

III. SUPPLEMENTARY NOTES

Chances are there will be typos and mistakes since the notes are created by me. Please let me know if there’s
anything wrong or confusing.

A. Taylor Series and Laurent Series

The idea of Taylor series is that all analytic functions (i.e. functions whose nth derivative exists) can be expressed
as the sum of polynomials. The coefficients are determined by the derivative at a particular point. The function is
written as,

f(z) = f(z0) +
f

′
(z0)

1!
(z − z0) +

f
′′
(z0)

2!
(z − z0)2 + ...+

f (n)(z0)

n!
(z − z0)n + ... (1)

To save some ink, we rename the coefficients,

f(z) = a0 + a1(z − z0) + a2z − z0)2 + ...+ an(z − z0)n + ... (2)
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When the function is no longer analytic, it cannot be expressed as the sum of nice polynomials because it has
singularities. So we think of extending Taylor series into a more generic power series, namely, Laurent series. If f(z)
has a singularity at z0 and it is a simple pole, then f(z) can be expressed as,

f(z) =
a−1
z − z0

+ a0 + a1(z − z0) + a2z − z0)2 + ...+ an(z − z0)n + ... (3)

If f(z) has a double pole at z0,

f(z) =
a−2

(z − z0)2
+

a−1
z − z0

+ a0 + a1(z − z0) + a2(z − z0)2 + ...+ an(z − z0)n + ... (4)

B. Residual and Double Pole

Residual is simple a−1 of a Laurent series. From this definition, we know that it depends on the function, the
contour and the singularities enclosed.
In order to find a−1, we multiply both sides by (z − z0) and take the limit of z goes to z0,

lim
z→z0

f(z)(z − z0) = lim
z→z0

(a−1 + a0(z − z0) + a1(z − z0)2 + a2(z − z0)3 + ...+ an(z − z0)n+1 + ...) (5)

This is what happens when we evaluate the integral.
When z0 is a double pole, the same trick doesn’t work because of the a−2 term,

lim
z→z0

f(z)(z− z0) = lim
z→z0

(fraca−2z − z0 + a−1 + a0(z− z0) + a1(z− z0)2 + a2(z− z0)3 + ...+ an(z− z0)n+1 + ...) (6)

In order to obtain a−1, we do instead,

lim
z→z0

d

dz
[f(z)(z − z0)2] = lim

z→z0

d

dz
(a−2 + a−1(z − z0) + a0(z − z0)2 + a1(z − z0)3 + ...+ an(z − z0)n+2 + ...) (7)

Clearly, a−1 is the only thing left after this.
If a function contains 1

(z−z0)3 or even worse, we multiply whatever that sends the denominator to 1, and take

derivatives. Always keep in mind what you want to obtain before manipulating the function.

C. Principle Value of an Integral

Principle value method is a way to evaluate integral. It is neither smatter nor simpler than Cauchy integral formula
in my opinion. I was taught this because I ”might need to communicate with the rest of world” . The difference
before principle value and Cauchy method is that there is an extra step in principle value before applying Cauchy
integral formula.
The idea of principle value is that we jump over the singularities when evaluating an integral. This extra step which
presumably makes it more straightforward. Principle value of an integral is the same as the integral’s value when the
integral converges, yet it exists even if the integral diverges (i.e. goes to infinity).

P = lim
ε→0

∫ −ε
−∞

f(z)dz + lim
ε→0

∫ ∞
ε

f(z)dz (8)

The integral from −ε to ε goes to zero as ε goes to zero.

Example:

I =

∫ ∞
−∞

sinx

x
dx

In this example I will only demonstrate the extra step of Principle value method to show how principle value method
is connected to Cauchy theorem. The rest of the example which is the Cauchy method will be completed in class.
Solution:
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First note, the principle value of this integral is the true value of the integral because the function is convergent.
There is a singularity at 0, but the function doesn’t go to infinity there. So, I = P

∫∞
−∞

sin x
x dx. sin x

x is the imaginary

part of eix

x by Euler’s equation. Now define J = P
∫∞
−∞

eix

x dx and I = Im(J).

J = lim
ε→0

∫ −ε
−∞

eix

x
dx+ lim

ε→0

∫ ∞
ε

eix

x
dx

This brings us to the starting point of Cauchy theorem.

D. Fourier Transform

Heisenberg uncertainty principle (position and momentum): ∆x∆p > h̄/2 (there is also an energy and time
uncertainty principle). It says momentum and position of an object cannot be determined with 100% certainty
simultaneously. Mathematically, the Fourier Transform of Dirac delta is a sinusoidal curve. Using physical intuition,
we know this makes sense because when position is very well defined (Dirac delta), its momentum spreads out. This

is one example showing math and physics agree with each other. f(x) and f̃(k) describe the same object but in two
different languages.
An interesting subtlety concerning Fourier transform is that nothing is infinity is physical world, so f(x) and f̃(k) are
not equivalent unless they are infinite. This somehow seconds that transform is not the same as a change of variable.
However, it is hard to think at infinity; this is easier to see if you think of x and p as matrices. In non-commutative
algebra (whatever that means), Heisenberg principle is [x, p] = ih̄I. The dimensions of trace are not equal on the two
sides unless x and p have infinite dimensions.

tl; dr (totally your loss if you didn’t.) Math goes hand in hand with physics.

E. Fourier series

Applet: http://mathlets.org/mathlets/ [Courtesy of MIT 18.03 instructors]

F. Useful Tools

Latex - Allows you to type everything and anything; Easy to format; used in (almost) all science and math
journals; Free

MATLAB - Good for matrix and differential equations (yet not the best and sometimes crashes); C++ syntax;
Popular for data analysis (popular is not necessarily the best); not free

Mathematica - Good for symbolic manipulations; Creates beautiful graphs; has its own syntax, but it’s super
straightforward; Help Centre actually helps; not free

MATLAB and Mathematica are not free, actually quite pricey, but chances are your college will pay for you. They
doesn’t help in either high school math or Olympiad. I didn’t use any of these in high school, but they are extremely
helpful to me in college.
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