
Notes on the Foundations of Computer Science

Dan Dougherty
Computer Science Department
Worcester Polytechnic Institute

October 5, 2018 – 17 : 06

Contents

I Mathematics Background 11

1 Relations and Functions 11

1.1 Notation for Common Sets 11

1.2 Functions . 11

1.3 Properties of Composition 12

1.4 Injective and Surjective . 12

1.5 Relating Injections, Surjections, and Inverses 13

1.6 Characteristic Functions and Subsets 15

1.7 Relations . 16

1.8 Composition and Inverse on Relations 17

1.9 Properties of Relations . 18

1.10 Exercises . 19

2 Strings, Languages, and Regular Expressions 25

2.1 Why Do We Care About Languages? 26

2.2 Ordering Strings . 28

1

CONTENTS

2.3 Operations on Languages . 29

2.4 Regular Expressions and Pattern Matching 31

2.5 Languages vs Expressions . 33

2.6 Algebraic Facts About Languages 33

2.7 A Typical Proof About Languages 35

2.8 Exercises . 37

3 Cardinality 44

3.1 Key Definitions . 44

3.2 Basic Tools . 45

3.3 Some Examples . 46

3.4 Uncountable sets . 48

3.5 Tools for Showing Countability 51

3.6 Cardinality and Formal Languages 52

3.7 The Continuum Hypothesis 54

3.8 Summary . 54

3.9 Exercises . 56

4 Trees 58

4.1 König’s Lemma . 60

4.2 Application: multiset induction 61

4.3 Exercises . 62

5 Induction: Defining, Computing, and Proving 65

5.1 Defining . 65

5.2 Proving . 66

II Regular Languages 69

2

CONTENTS

6 Deterministic Finite Automata 69

6.1 Regular Languages . 71

6.2 Not All Languages are Regular 73

6.3 A Peek Ahead: Regular Expressions and DFAs 74

6.4 Exercises . 75

7 DFA Complement and Product 77

7.1 The Complement Construction 77

7.2 The Product Construction . 78

7.3 Regular Closure: Intersection and Union 81

7.4 Exercises . 83

8 Nondeterministic Finite Automata 84

8.1 Runs of an NFA . 84

8.2 Examples . 85

8.3 From NFAs to DFAs: the Subset Construction 87

8.4 The Product Construction on NFAs 91

8.5 The Complement Construction on NFAs? 91

8.6 Exercises . 92

9 NFAs with λ-Transitions 98

9.1 From NFAλ to NFA . 99

9.2 NFAλ for Closure Properties 103

9.3 Pictures . 104

9.4 Algorithms and Correctness 105

9.5 Exercises . 106

10 From Regular Expressions to Automata 109

10.1 Exercises . 111

3

CONTENTS

11 From Automata to Regular Expressions 112

11.1 Using Equations to Capture NFAs 112

11.2 Arden’s Lemma . 114

11.3 Using Arden’s Lemma: First Steps 115

11.4 The General Technique: Arden’s Lemma and Substitution . . . 116

11.5 Perspective . 121

11.6 Exercises . 123

12 Proving Languages Not Regular 124

12.1 The K-Distinguishability Relation 124

12.2 Examples . 125

12.3 Regular Languages Have Finitely Many Classes 127

12.4 Using Distinguishability to Prove Languages Not Regular . . . 128

12.5 Exercises . 133

13 DFA Minimization 138

13.1 Unreachable States . 139

13.2 State Equivalence . 139

13.3 Computing the ≈ relation . 142

13.4 The Collapsing Quotient of a DFA 145

13.5 M≈ Does the Right Thing . 148

13.6 M≈ is special . 149

13.7 Application: Testing Equivalence of DFAs 151

13.8 Collapsing NFAs? . 152

13.9 Exercises . 153

14 The Myhill-Nerode Theorem 156

14.1 Finite index languages are regular 156

14.2 Relating Myhill-Nerode and Minimization 159

14.3 Exercises . 161

4

CONTENTS

15 Decision Problems about Regular Languages 163

15.1 DFA Membership . 163

15.2 DFA Emptiness . 163

15.3 DFA Universality . 164

15.4 DFA Subset . 164

15.5 DFA Equality . 165

15.6 DFA Infinite Language . 165

15.7 NFA and Regular Expression inputs 166

15.8 Complexity of Regular Conversion Algorithms 166

15.9 NFA Membership . 166

15.10 Regular Expression Membership 167

15.11 Exercises . 168

III Context-Free Languages 170

16 Context-Free Grammars 170

16.1 Parse Trees . 173

16.2 Regular Grammars . 176

16.3 More Examples and non-Examples 179

16.4 Closure Properties, or How to Build Grammars 182

16.5 There Are Countably Many CFLs 187

16.6 Exercises . 189

17 Proving correctness of grammars 192

17.1 General Strategy . 192

17.2 Examples . 192

17.3 Exercises . 197

5

CONTENTS

18 Ambiguity 200

18.1 Removing Ambiguity From Grammars 201

18.2 Inherent Ambiguity . 205

18.3 Exercises . 206

19 Refactoring Context-Free Grammars 211

19.1 Eliminating Useless Rules . 211

19.2 Eliminating Chain Rules . 215

19.3 Eliminating Erasing Rules . 217

19.4 An Upper Bound on Derivation Lengths 224

19.5 Chomsky Normal Form . 224

19.6 NFAλs Revisited . 226

19.7 Exercises . 228

20 Pushdown Automata and Parsing 232

20.1 Warm Up: DFAs Are Parsers for Regular Grammars 232

20.2 Pushdown Automata . 234

20.3 Non-Determinism . 241

20.4 PDAs and CFGs . 242

20.5 PDAs and Parsing Algorithms 246

20.6 Exercises . 249

21 Context-Free Membership and the CKY Algorithm 252

21.1 A Bounded Exhaustive Search 253

21.2 The Cocke-Younger-Kasami algorithm 255

21.3 Exercises . 256

22 Proving Languages Not Context-Free 257

22.1 A Language Which is Not Context-Free 257

22.2 A Pumping Lemma for Context-Free Grammars 260

22.3 Exercises . 263

6

CONTENTS

23 Decision Problems About CFGs 266

23.1 CFG Membership . 266

23.2 CFG Emptiness . 266

23.3 CFG Infinite Language . 267

23.4 CFG Universality . 268

23.5 CFG Ambiguity . 268

23.6 Exercises . 269

IV Computability 270

24 Computability: Introduction 271

24.1 The Halting Problem . 271

24.2 The Halting Problem Revisited 272

24.3 Exercises . 274

25 Decision Problems, Languages, and Encoding 276

25.1 Things Are Strings . 276

25.2 Decision Problems Are Languages 276

25.3 Bit Strings Are Universal . 279

25.4 Enumerating the Bit Strings 279

25.5 Summary . 280

25.6 Exercises . 280

26 Functions, Programs, and Decidability 283

26.1 Turing Machines and Programs 283

26.2 Partial Functions . 284

26.3 Programs Compute Partial Functions 285

26.4 Programs Are Not The Same As Functions! 286

26.5 Programs Accept Languages 287

7

CONTENTS

26.6 Decidable Languages . 287

26.7 Two Examples . 288

26.8 Undecidable Problems: a Cardinality Argument 289

26.9 Extensionality . 290

26.10 Section Summary . 291

26.11 Exercises . 293

27 Some Decidable Languages 294

27.1 Decision Problems about Finite Automata 294

27.2 Decision Problems About CFGs 295

27.3 Closure Properties of the Decidable Languages 296

27.4 Exercises . 298

28 Some Undecidable Languages 300

28.1 Standalone Arguments . 300

28.2 Undecidability via Reduction 303

28.3 Reduction by Specialization 306

28.4 Exercises . 308

29 Rice’s Theorem 311

29.1 Functional Properties of Programs 311

29.2 Functional Sets . 312

29.3 What do we mean by “non-trivial”? 313

29.4 The Theorem . 314

29.5 Exercises . 315

30 Semidecidable Languages 317

30.1 Decidable versus Semidecidable 322

30.2 Closure Properties of the Semidecidable Languages 324

30.3 Exercises . 327

8

CONTENTS

31 Enumerability 330

31.1 Enumerability is Equivalent to Semidecidability 330

31.2 Exercises . 331

32 Always-Terminating Programs Can’t be Enumerated 334

33 Reducibility 336

33.1 Reducibility and Semidecidability 338

33.2 Two Potential Gotchas . 339

33.3 Transitivity of �m . 339

33.4 The Acceptance Problem Revisited 340

33.5 Why the Acceptance Problem is Special 341

33.6 Emptiness Is Not Semidecidable 342

33.7 Reducibility for Complexity 342

33.8 Exercises . 342

34 Post’s Correspondence Problem 346

34.1 Examples . 346

34.2 Undecidability of PCP . 348

34.3 Exercises . 348

35 Undecidability Results about Context-Free Grammars 350

35.1 PCP meets CFG . 350

35.2 Context-Free Language Intersection 351

35.3 Context-Free Grammar Ambiguity 353

35.4 Context-Free Universality . 354

35.5 Exercises . 356

9

CONTENTS

36 Undecidability Results about Arithmetic 357

36.1 Polynomial Solvability . 357

36.2 Polynomials over the Integers and Natural Numbers 358

36.3 Logical Truth . 363

36.4 Summary . 365

36.5 Exercises . 366

Introduction

The notes are designed for teaching various courses in the foundations of computer
science.

There is a canonical set of topics that appears reliably in every such course: finite
automata, context-free grammars, Turing machines and undecidability. These
notes explore each of these topics as well. There is some novelty in the presentation
here in that in addition to treating “foundations” per se we try to provide the student
with an intellectual toolkit for the design and analysis of systems. This is a running
theme of the course.

Some exercises and examples have been borrowed, as indicated, from the textbooks
by John Hopcroft, Rajeev Motwani and Jeffrey Ullman [HMU06], Jeff Erickson
[Eri], Dexter Kozen [Koz97], Michael Sipser [Sip96], and Thomas Sudkamp
[Sud97].

10

1 RELATIONS AND FUNCTIONS

Part I

Mathematics Background

1 Relations and Functions

1.1 Notation for Common Sets

The following standard sets arise everywhere:

• N, the natural numbers: {0,1,2, . . .}.

• Z, the integers: {. . . ,−2,−1,0,1,2, . . .}.

• Q, the rational numbers: the set of numbers that can be written as quotients
p/q of integers (with q 6= 0).

• R, the real numbers: the set of numbers that can be written as—possibly
infinite—decimals.

1.2 Functions

A function f : A→ B is a subset A×B, that is a set of ordered pairs, that satisfies
the following property: for each a ∈ A there is exactly one b ∈ B with (a,b) ∈ f .

Common usage is to write f (a) = b instead of (a,b)∈ f . We say that f has domain
A and codomain B. The range of f is {b ∈ B | ∃a ∈ A, f (a) = b}, the elements of
the codomain that actually arise as images. 1

1.1 Definition (Function Composition). Let f be a function from A to B, and let g
be a binary relation from B to C. The composition g◦ f is the function from A to C
given by: (g◦ f)(x) = g(f (x)).

Note that (g ◦ f) means “ f first, then g”! Composition of functions is not always
defined, of course, the domain and codomains have to match up properly.

The identity function on set A is denoted idA.

1Unfortunately some authors use the word “range” for what we have called the “codomain.” You
have to be careful when you read.

11

1 RELATIONS AND FUNCTIONS

1.3 Properties of Composition

• Function composition is associative: ((h◦g)◦ f) = (h◦ (g◦ f)).

• The identity function is an identity element for composition: (f ◦ idA) = f
and (idA ◦ f) = f when f : A→ A.

Composition is not commutative.

1.2 Check Your Reading. Give an example to show that function composition is
not commutative.

An easy way out is to note that if f and g are functions with different domains and
codomains then f ◦g 6= g◦ f , for a dumb reason (what is it?)

So do something more interesting: find a set A and functions f : A → A and
g : A→ A where f ◦ g 6= g ◦ f . (This is easy. Just try some random functions
and they will probably work!)

1.4 Injective and Surjective

Here are some properties that a given function may or may not posses. Let
f : A→ B. We say that f is

• one-to-one, or injective, if whenever a 6= a′ then f (a) 6= f (a′),

• onto, or surjective, if for every b ∈ B there is at least one a ∈ A such that
f (a) = b.

• bijective if it is both injective and surjective.

A bijection is sometimes called a one-to-one correspondence, but this latter name
invites confusion with the simple term “one-to-one” so we will stick to “bijection,”
especially since it is more fun to say.

1.4.1 Inverses

The question of when a function f : A→ B has a inverse function is interesting.
Indeed it turns out to be very useful to be picky, and make a distinction between
left and right inverses.

1.3 Definition. (Function Inverses) Let f be a function, f : A→ B.

12

1 RELATIONS AND FUNCTIONS

• g : B→ A is a left inverse for f if g◦ f is the identity on A.

• g : B→ A is a right inverse for f if f ◦g is the identity on B.

• g : B→ A is a two-sided inverse for f if it is both a left inverse and a right
inverse.

It is common practice (though potentially confusing) to simply say that “g
is the inverse of f ” when one really means that “g is a two-sided inverse of
f .”)

1.4 Check Your Reading. Left inverses and right inverses are (at least, can be)
different:

• Give an example of a function f such that there is some g with f ◦ g the
identity yet g◦ f is not the identity.

• Give an example of a function f such that there is some g with g ◦ f the
identity yet f ◦g is not the identity.

1.5 Relating Injections, Surjections, and Inverses

Does every function have a two-sided inverse? Certainly not. It is useful to explore
this carefully. So suppose f : A→ B. We want to build a function g : B→ A that
“undoes” f . The obvious thing to try, intuitively, is,

take some element b in B, we want to define what g(b) is . . . since g is
supposed to undo f , we just take g(b) to be the thing from A such that
f (a) = b.

This is the right thinking, but there are two things that can wrong in trying to make
it happen.

1. For the b in question, there might not be any a from A such that f (a) = b.

This problem can happen if f is not surjective.

2. Even if there is such an a, there might not be a unique one, so that we don’t
have a natural choice about what to choose as our g(b).

This problem can happen if f is not injective.

13

1 RELATIONS AND FUNCTIONS

The discussion above suggests that if f is both injective and surjective then we can
always build an inverse function g.

What’s interesting is that if f is injective, but not necessarily surjective, then we can
get halfway, namely we can define a “one-sided” inverse. Similarly, f is surjective,
but not necessarily injective, then we can define a one-sided inverse on the other
side.

1.5 Theorem. Let f : A→ B.

1. f is surjective if and only if f has a right inverse.

2. f is injective if and only if A = /0 or f has a left inverse.

Proof. 1. Let g be a right inverse for f , so that f ◦g = idB. Let b ∈ B; we seek
a ∈ A such that f (a) = b. The element g(b) works: f (g(b)) = idB(b) = b.

Suppose f is surjective. Define g : B→ A as follows. For any a = b ∈ B,
choose an arbitrary a ∈ A such that f (a) = b. Such an a exists since f is
surjective. Then g is a right inverse for f since f (g(b)) = b by definition.

2. Let g be a left inverse for f , so that g◦ f = idA. To show f injective, suppose
we have f (a1) = f (a2), we want to show a1 = a2. Since f (a1) = f (a2), we
have g(f (a1)) = g(f (a2)). Since g◦ f = idA this equation reduces to a1 = a2.

Suppose f is injective. If A 6= /0, we define g : B→ A as follows. First choose
some arbitrary a0 ∈ A. We can do that because we’ve assumed A 6= /0. Now
we define g as follows. If b is in the range of A, choose g(b) to be any a such
that f (a) = b. If b is not in the range of A, choose g(b) to be a0. It is easy to
check that g◦ f = idA.

///

1.5.1 “Pointless” Reasoning

It can be efficient and satisfying to reason about functions as algebraic objects
rather than working with “points” in sets. Theorem 1.5 is a great tool for this. Here
is a series of examples.

The following result is often quite useful.

1.6 Lemma. Let A and B be sets, with A not empty. There is an injective function
from A to B if and only if there is an surjective function from B to A.

14

1 RELATIONS AND FUNCTIONS

Proof. Suppose f : A→ B is injective. Since f is injective it has a left inverse,
g : B→ A with g ◦ f = idA. This g is the function we seek: since g has a right
inverse, namely f , it is surjective.

Conversely, suppose g : B→ A is surjective. Since g is surjective it has a right
inverse, f : A→ B with g◦ f = idA. This f is the function we seek: Since f has a
left inverse, namely g, it is injective. ///

It is easy enough to prove the above results directly, by chasing points around. But
the algebraic proofs are much easier.

The empty set and singleton sets. The empty set and singleton sets have some
distinctive features. Here are some elementary facts to keep in mind, make sure
they are clear to you.

Let S be a set with exactly one element. For any set A there is exactly one function
from A to S. This function is surjective. For any set A there are precisely as
many functions from S to A as there are elements of A. Each of those functions
is injective.

Consider the empty set /0. For any set B there is exactly one function from /0 to B.
This function is injective. For any set B there are no functions from B to /0, except
when B is also the empty set, in which case there is exactly one (bijective) function.

1.6 Characteristic Functions and Subsets

Characteristic functions are a different way of thinking about the idea of “subset.”

Fix a set U , think of it intuitively as “the universe.” Now imagine a set S ⊆ U .
Based on S we can define a function chS : U →{0,1} by

1.7 Definition.
chS(x) =

{
0 if x /∈ S
1 if x ∈ S

This function is called the characteristic function of the set S.

1.8 Check Your Reading (Very Important). Fix U.

1. Show that if c : U → {0,1} is any function from U to {0,1} then there is a
subset S of U of which c is the characteristic function.

15

1 RELATIONS AND FUNCTIONS

2. Show that if S and T are two different subsets of U then chS and chT are
different functions.

3. Show that if c : U → {0,1} and d : U → {0,1} are two different functions
then they are the characteristic functions of two different sets.

Summarizing: Every subset has a characteristic function: that’s Definition 1.7.
Every function from U to {0,1} is a characteristic function for some set: that’s
what 1 says. Different subsets give different characteristic functions: that’s what 2
says. Different characteristic functions give different subsets: that’s what 3 says.

The takeaway message from all of this is the slogan

Subsets and characteristic functions are the same things, just in
different notation.

But beware, these are pure mathematical functions, and there need not be any
“algorithm” to compute them. We are certainly not claiming that for any given
subset there is actually a computer program that computes the characterisitc
function!

A remark about notation. In mathematics one often sees Y X to denote the set of
all functions from a set X to a set Y . That is, mathematicians sometimes extend
the exponent notation that you are familiar with to the setting of sets and functions
between them. This is a “pun”, which can be confusing. But the last part of
Exercise 1 explains why this notation is suggestive.

In fact some authors use the notation 2U to denote the set Pow(U) of all subsets of
U . Here is why. People sometimes use “2” as syntact sugar for the set {0,1}. So
when we write 2U this is just syntactic sugar for {0,1}U . That is, when we write 2U

we are really denoting the set of characteristic functions over U . The relationship
between “the set of characteristic functions over U” and “the set of all subsets of
U is so strong that some authors use the same notation, 2U , to denote them both.

1.7 Relations

An n-ary relation is simply is subset of A1×A2 · · · ×An where A1,A2, . . . ,An are
sets. The most common case is that of a binary relation, where n = 2. And the
most common case of all is when R ⊆ A×A is a binary relation from a set to the
same set; in this case we speak of a binary relation on A.

16

1 RELATIONS AND FUNCTIONS

These two expressions mean the same thing: (a,b) ∈ A and R(a,b). People tend
to use the first when thinking “set-theoretically” and tend to use the second when
thinking “logically.”

Notice that a binary relation on A is the same thing as a directed graph with A as
the set of nodes. Sometimes it is helpful to draw pictures of relations in this way.

1.9 Examples. Here are some binary relations.

1. On the integers: R(a,b) if a−b is divisible by 2.

2. On the integers: R(a,b) if a divides b.

3. On the real numbers: R(a,b) if a2 +b2 ≤ 1.

4. On the real numbers: R(a,b) if a−b is an integer

5. On the real numbers: R(a,b) if |a−b| ≤ 1

6. Let A be the set of pairs (n,d) of integers with d 6= 0. Define
R((n,d),(n′,d′)) if n∗d′ = n′ ∗d

7. On the integers: R(a,b) if ab is a perfect square.

1.8 Composition and Inverse on Relations

1.10 Definition (Relation Composition). Let R be a binary relation from A to B,
and let P be a binary relation from B to C. The composition R ◦P is the binary
relation from A to C given by: (x,z)∈P◦R if there is some y∈B such that (x,y)∈R
and (y,z) ∈ P.

1.11 Definition (Relation Inverse). Let R be a binary relation from A to B. The
inverse R−1 of R is binary relation from B to A given by: (x,y) ∈ R−1 if and only if
(y,x) ∈ R.

The topic of inverses is much more interesting when talking about functions, as
opposed to relations.

If R is (just) a binary relation from A to B then is no trouble (Definition 1.11) in
defining the inverse of R. But suppose f is a function from A to B. Then, since f
is a (special kind of) relation, sure, there is an inverse of f . But the inverse of f , in
the relational sense, might not be a function!

17

1 RELATIONS AND FUNCTIONS

1.12 Check Your Reading. We already defined composition of functions, and any
function is a also a relation. So it would be embarrassing if those definitions didn’t
match up. Convince yourself that if f : A→ B and g : B→C are functions, then the
composition of f and g considered as relations (that is, via Definition 1.10) really
is the same the composition as functions (that is, via Definition 1.1).

1.9 Properties of Relations

Here is a list of properties that a given binary relation may or may not posses. Let
R⊆ A×A. We say that R is

• reflexive if for every a ∈ A: R(a,a).

• symmetric if for every a,b ∈ A: R(a,b) implies R(b,a)

• transitive if for every a,b,c ∈ A: R(a,b) and R(b,c) imply R(a,c).

• antisymmetric if for every a,b ∈ A: R(a,b) and R(b,a) imply a = b.

• complete if for every a,b ∈ A: R(a,b) or R(b,a).

Try to describe what each of the properties above corresponds to in terms of graphs.
(For example, to say that R is reflexive is to say that at, as graph, the relation has a
self-loop at each node.)

1.13 Check Your Reading. For each subset S of the properties { reflexive,
symmetric, transitive, antisymmetric } try to define a set A and a binary relation R
on A that has those properties in S but not the others; try to make A and R as small
as possible. (Finding really examples is a good way to make sure you have isolated
the crucial components of the point you are making.)

Note that there are 16 parts to this question! Feel free to draw your answers as
directed graphs.

1.9.1 Equivalence relations and partitions

A relation R is an equivalence relation if it is reflexive, symmetric, and transitive.

18

1 RELATIONS AND FUNCTIONS

A partition of a set A is a set P = {A1,A2, . . .} of subsets of A, with the two
properties that (i) Ai∩A j = /0 if i 6= j, and (ii)

⋃
i Ai = A. Equivalence relations and

partitions are different ways of expressing the same situation. If R is an equivalence
relation on A, then we obtain a partition of A by putting two elements in the same
partition element precisely when they are R-related. And if P is a partition, then we
obtain an equivalence relation from P by defining two items to be related precisely
when they are in the same element of the partition.

1.14 Check Your Reading. For each of the relations earlier that you determined
to be equivalence relations, describe the associated partition.

1.9.2 Order relations

Let R be a binary relation on a set A, in other words let R be a subset of A×A.

• R is a preorder if it is reflexive, and transitive.

• R is a partial order if it is reflexive, antisymmetric, and transitive.

• R is a total order if it is reflexive, antisymmetric, transitive, and complete.

1.10 Exercises

Exercise 1. For this exercise, let A be a finite set with a elements, let B be a finite
set with b elements, and let S be some arbitrary singleton set (i.e. a set with one
element).

1. How many functions are there from A to S?

2. How many functions are there from S to A?

3. How many functions are there from A to /0?

4. How many functions are there from /0 to A?

5. How many functions are there from A to B?

Exercise 2. For each function below, decide whether it is injective or not. If it is
injective, just say so. If it is not injective, give a concrete reason why not.

1. f : R→ R, defined by f (x) = x2

19

1 RELATIONS AND FUNCTIONS

2. g : R→ R, defined by g(x) = 2x

Exercise 3. For each function below, decide whether it is surjective or not. If it is
surjective, just say so. If it is not surjective, give a concrete reason why not.

1. f : R→ R, defined by f (x) = x2

2. g : R→ R, defined by g(x) = 2x

Exercise 4. The goal of this exercise is to show that the properties of being injective
and surjective are independent of each other.

1. Give an example of a function f : N→ N that is injective and surjective.
Now give a second example.

2. Give an example of a function f : N→ N that is injective but not surjective.
Now give a second example.

3. Give an example of a function f : N→ N that is surjective but not injective.
Now give a second example.

4. Give an example of a function f : N → N that is neither injective nor
surjective. Now give a second example.

Now repeat the previous exercise, but work with finite sets rather than N. That
is, for each of the four combinations of “injective and surjective, or not”, find
examples of functions f : A→ B where you can choose the A and B.

In each case, try to find the smallest sets A and B that support an example.

Exercise 5. Note that in Exercise 4 you were not asked to find examples that are
functions from a finite set to itself. For which of the four parts of that exercise
could we have asked for a function f : A→ A, with A finite, and for which would
it be impossible?

Each part of the following exercise can be proved by a rather tedious argument
that traces through the effect of functions on points. But once we have proved the
algebraic results in Theorem 1.5 we have nice tidy “calculational” proofs available.
Two of them are done for you.

Exercise 6. Let f : A→ B and g : B→C.

1. If f and g are injective then (g◦ f) : A→C is injective.

20

1 RELATIONS AND FUNCTIONS

2. If (g◦ f) : A→C is injective then f is injective. (It does not follow that g is
injective, however.)

3. If f and g are surjective then (g◦ f) : A→C is surjective.

4. If (g◦ f) : A→C is surjective then g is surjective. (It does not follow that f
is injective, however.)

Proof.

1. Suppose f and g are injective, we want to prove that (g◦ f) is injective. We
first have to handle the trivial special case when A = /0: the result follows
from the fact that (g◦ f) is automatically injective since the domain is /0. For
the non-trivial case it suffices to find an h : C→ A such that h◦ (g◦ f) = idA.
By our assumptions about f and g we have h1 and h2 such that h1 ◦ f = idA

and h2 ◦g = idB. Draw a picture! We can define our desired h to be h1 ◦h2.
To see that this works, we calculate:

h◦(g◦ f)= (h1◦h2)◦(g◦ f)= (h1◦(h2◦g)◦ f)= (h1◦idB◦ f)= (h1◦ f)= idA.

2. Assume (g ◦ f) : A→ C is injective. We want to show that f is injective.
Again the case when A = /0 is easy since f is a function with domain /0.
Otherwise it suffices to exhibit some h such that h◦ f = idA. By the fact that
(g◦ f) is injective there is an h1 such that h1 ◦(g◦ f) = idA. But then we may
take our desired h to be (h1 ◦g). Again, draw a picture to make this clear.

3. Left for you.

4. Left for you.

///

Next, recall that in order for g to be an “inverse” of a function f we required that
g serve both as a left inverse for f and also as a right inverse for f . This suggests
a question: suppose we have a function f that has a left inverse g1 and a right
inverse g2. Will f necessarily have an inverse, that is, a single function g that
simultaneously does the job of being a left- and right inverse? The answer is yes:

Exercise 7. Prove: For an arbitrary f : A → B, if there exists g1 and g2 with
g1 ◦ f = idA and f ◦g2 = idB, then f has an inverse. In fact, in this case, g1 and g2
must be the same function, which is indeed the inverse.

Hint. Use pointless reasoning!

21

1 RELATIONS AND FUNCTIONS

Exercise 8. Suppose f1 : A1→ B1 and f2 : A2→ B2 are each injective. Exhibit an
injective function f : (A1×A2)→ (B1×B2) ; explain why it is injective.

Define f by: f (a1,a2) = (f1(a1), f2(a2)).

To show this is injective: suppose f (a1,a2) = f (a′1,a
′
2); we want to show that

(a1,a2) = (a′1,a
′
2).

If f (a1,a2) = f (a′1,a
′
2), this means that (f1(a1), f2(a2)) = (f1(a′1), f2(a′2)); which

in turn means that (f1(a1)) = (f1(a′1)) and also (f2(a2)) = (f2(a′2)). Since f1
is injective we conclude that a1 = a′1 and since f2 is injective we conclude that
a2 = a′2. Therefore we have (a1,a2) = (a′1,a

′
2) as desired.

Exercise 9. Suppose f : A→ B and g : B→C are functions.

As a review for yourself, make a full taxonomy of the implications you can make
concerning injectivity and surjectivity and composition. That is, for each way
of filling in the blanks below with the words “injective” or “surjective”, decide
whether the resulting statement is either true or false. If a statement is true give
a proof, ideally using left- and right-inverses. If it is false give a specific pair of
functions f and g making the statement false (don’t forget to say what A,B, and C
are).

1. If (g◦ f) is then g has this property as well.

2. If (g◦ f) is then f has this property as well.

3. If g is then (g◦ f) has this property as well.

4. If f is then (g◦ f) has this property as well.

Exercise 10. A two-sided inverse for a function f : A→ B is a function g : B→ A
such that (g◦ f) is the identity on A and (f ◦g) is the identity on B. Now, suppose
we had a situation where f had a left inverse and also had a right inverse. Does
that automatically mean that f has a two-sided inverse?

Prove that the answer is yes. In fact prove that if g1 is a left inverse for f and g2 is
a right inverse for f , then in fact g1 = g2.

Hint. This is an excellent example of the use of pointless reasoning. Start with the
equation (f ◦g1) = idB and do a little algebraic reasoning do derive g1 = g2.

Exercise 11. True or false? If R is a relation that is a function, then R−1 is a
function.

If true, give a proof, if false, give a specific counterexample.

22

1 RELATIONS AND FUNCTIONS

Exercise 12.

1. List all the binary relations on the set {1,2}

2. How many binary relations are there on a set with n elements?

Exercise 13. Give an example to show that relation composition is not commuta-
tive.

Exercise 14. For each relation R from Examples 1.9 determine which of the above
properties it enjoys.

Exercise 15 (Functions and equivalence relations). An important example of an
equivalence relation is the following. Let f : A→ B. Define the relation R on A
by: R(a1,a2) if f (a1) = f (a2). A moment’s thought shows that this is indeed an
equivalence relation. What is the associated partition of the set A?

Consider some specific functions (you choose which ones). For each function,
write down (draw pictures of) the equivalence relation generated by each function

Exercise 16. Let A be the set {a,b,c}. List all the equivalence relations on A. It
will be easiest to present all the partitions. Hint: there are 5 equivalence relations.

How many equivalence relations are there on the set {a,b,c,d}?

If I asked you how many equivalence relations there were on the set {a,b,c,d,e},
you’d have a right to be mad at me: there are 52.

Exercise 17. Find natural examples of relations over the integers that are

1. preorders but not partial orders,

2. partial orders but not total orders,

Now, do these two problems again, but give examples where R is a relation over a
finite set A, and where R and A are as small as you can make them.

Exercise 18. Consider the “divides” relation a | b, which holds a divides b evenly,
that is, if there exists c such that ac = b. (Note that according to this definition, 0
divides 0....)

1. Suppose a, b, and c are taken to range over the natural numbers (that is, the
non-negative integers). Is divides a preorder? Is it a partial order? Is it an
equivalence relation?

23

1 RELATIONS AND FUNCTIONS

2. Same questions, except now suppose a, b, and c are taken to range over the
integers.

3. Same questions, except now suppose a, b, and c are taken to range over the
rational numbers. (Be careful, this is a little tricky.)

Exercise 19. Suppose R is a preorder on A. Decide whether the following are true
or false. If true, give a proof, if false, give a specific counterexample.

1. If R is an equivalence relation then R−1 is an equivalence relation.

2. If R is a partial order then R−1 is a partial order.

3. If R is a total order then R−1 a total order.

24

2 STRINGS, LANGUAGES, AND REGULAR EXPRESSIONS

2 Strings, Languages, and Regular Expressions

2.1 Definition. An alphabet is any finite set. We typically use Σ (the Greek capital
letter “Sigma”) to denote an alphabet, and often use the word “character” to
denote an element of an alphabet.

A string over alphabet Σ is a finite sequence of symbols from Σ. The set of strings
over alphabet Σ is denoted Σ∗. The unique string with length 0, the empty string,
is denoted λ. Sometimes strings are called “words.”

A language over alphabet Σ is any set of strings over Σ. That is, a language over
alphabet Σ is a subset of Σ∗. The empty set is a language, denoted /0.

Examples: The binary alphabet Σ2 is just {0,1}. Here are some strings over Σ2:
01, 111110, λ, 10101010101010101010. The ASCII alphabet is the set of 128
symbols you are presumably familiar with. A text file is just a string over the
ASCII alphabet.

The main operation on strings is concatenation. Just as with multiplication on
numbers we typically denote concatenation by juxtaposition: if x and y are strings
then xy is their concatenation. For this reason, we usually don’t parenthesize
concatenations.

The analogy between concatenation and multiplication goes further. Concatenation
is associative: (xy)z is the same string as x(yz). Concatenation has an identity
element, namely the empty string: λx = xλ = x. But concatenation is not
commutative: usually xy 6= yx.

Let x and y be strings. We say that x is a prefix of y if there is a string z such that
xz = y. We say that x is a substring of y if there are strings z1 and z2 such that
z1xz2 = y.

Do not confuse the language /0 with the string λ! They are not even the same type of
object: the latter is a string, the former is a set of strings. It can help your intuition
to think of any set S as being like a box, that has the elements of S inside. In
particular a language is like a box, with a collection of strings inside. One special
case is the box with nothing in it: this is /0. Another example is the box that has a
single string inside, which happens to be the empty string λ. This is the language
{λ}. That’s a perfectly good language. But, since it is a language with one element
in it, it is not the same as the empty language.

25

2 STRINGS, LANGUAGES, AND REGULAR EXPRESSIONS

2.1 Why Do We Care About Languages?

The notion of “language” as we have defined it sounds somewhat narrow at first.
But no. Let’s think about programs. Suppose we, for now, restrict our attention to
input/output behavior of programs. Then

• All computing can be viewed as computation on strings. After all, a program
reads input from standard input, a file,and it returns output on standard
output, which is again a file. A file is a sequence of bits. And a sequence of
bits is nothing more than a string over the alphabet Σ = {0,1}

• A program itself, its source code, is a file. Thus a program is a string over
Σ = the ASCII alphabet.

Of course we could think of a program source as a sequence of bits, too.
There’s more than one way to formalize a concept. But as will become
clearer, the difference between ASCII and binary won’t matter for the kinds
of things we will be thinking about.

• A fundamentally important subclass of computing problems are “decision
problems,” in which we are presented with an input (a string) and want to
answer yes or no. When we do that we are defining a language, namely the
set of those strings for which the answer is “yes”.

As will become clearer as we go, language membership, in the above sense, is a
fundamental problem in computer science, really, the fundmental problem.

2.1.1 Examples

Here are some naturally-occurring decision problems, presented first as yes-no
questions and then as the naturally associated languages.

1. Lexical Analysis
INPUT: an ASCII string x
QUESTION: is x a legal identifier for Java?

The corresponding language:

{x | x is a legal identifier for Java}

26

2 STRINGS, LANGUAGES, AND REGULAR EXPRESSIONS

2. Parsing
INPUT: an ASCII string x
QUESTION: is x a legal Java program?

The corresponding language:

{x | x is a syntactically legal Java program}

3. A Simple Correctness Property
INPUT: an ASCII string x
QUESTION: is x a Java program that prints ”Hello World”?

The corresponding language:

{x | x is a Java program that eventually prints ”Hello World” }

4. A Uniform Correctness Property
INPUT: an ASCII string x
QUESTION: is x a Java program that terminates normally on all
inputs?

The corresponding language:

{x | x is a Java program that terminates normally on all inputs}

Each of the sets above comprises a language, specifically, a subset of the set of
strings over the ASCII alphabet.

More interestingly, note that the above decision problems are given in increasing
order of intuitive complexity. One of the contributions of the material in this course
is to make this intuitive idea precise. We will develop a taxonomy of problems that
captures their inherent “complexity,” not in the sense of time or space requirements,
but in terms of the complexity of the kinds of abstract machines required to solve
them.

As an aside we note that the above perspective does make some non-trivial
assumptions. For example, we are not thinking about interactive programs,
that receive input and generate output continuously through the course of a
computation. Also, we are not considering, hybrid systems, like a thermostat, or
a robot, that communicate with and act on the physical world. There is of course
much to be said about inherent complexity of computation in these richer sense,
but the theory here should be mastered first.

27

2 STRINGS, LANGUAGES, AND REGULAR EXPRESSIONS

2.2 Ordering Strings

Let Σ be an alphabet. Let us order Σ in some arbitrary way, as Σ = [a1, . . . ,an].
Once we do that, there is a natural way to order the set Σ∗ of strings.

2.2 Definition. (Lexicographic Order on Strings) If the alphabet Σ is totally
ordered, this induces the lexicographic order ≺ on Σ∗ defined by:

• if |x|< |y| then x≺ y

• if |x|= |y| then, let i be the first position where x and y differ, let cx and cy be
the alphabet sybmbols in x and y at position i; set x ≺ y if cx is less than cy

in the ordering on Σ.

Namely, the empty string comes first, followed by all the strings of length 1, then
all the strings of length 2, and so on; with each group of length k we order strings
lexicographically, that is, in the dictionary ordering derived from the order on Σ.

For example, when Σ is {a,b,c} with a < b < c, we get the following ordered
enumeration of Σ∗

λ,a,b,c,aa,ab,ac,ba,bb,bc,ca,cb,cc,aaa,aab,

This puts Σ∗ is a natural bijective correspondence with N, and so we can refer to
the “nth string wn if it is convenient.

Exercise 20. Show that x = y if and only if x 6≺ y and y 6≺ x.

2.3 Example. (The Most Important Example) The case when Σ = {0,1}, with
0 < 1, works out particularly nicely. Take a string x ∈ Σ∗, and suppose that x is the
nth string in the above ordering, that is, x is wn. If we append a 1 to the left of x,
then view the resulting string 1x as a number encoded in binary, then the encoded
number will be precisely n+1.

For example, the empty string is w0, the 0th string in the encoding, since when we
prepend a 1, this is the number 1 in binary. If we wanted to know where 010 occurs
in the ordering, we prepend a 1 to get 1010, decode that in binary to get the number
10, which tells us that 010 is the w9, the 9th string.

What is w10, the 10th string? The encoding of 11 without leading 0s is 1011, so
the 10th string is 011.

28

2 STRINGS, LANGUAGES, AND REGULAR EXPRESSIONS

2.3 Operations on Languages

Suppose A and B are languages. Then we define the languages A∪B, A∩B, and A
(union, intersection, and complement) in the usual way, as with all sets. But since
A and B are sets of strings, there are two other operations that make sense:

• AB is the concatenation of A and B, the result of taking all possible
concatenations of the strings from A then from B:

AB def
= {xy | x ∈ A, y ∈ B}

• A∗ is the Kleene-closure2 or Kleene-star of A, the result of taking all
possible concatenations of any finite number of strings from A:

A∗ def
= {x1x2 . . .xn | n≥ 0; each xi ∈ A}
= {λ} ∪ A ∪ AA ∪ AAA ∪ . . .

Things to be careful about.

• Everyone uses the same name concatenation (and the same juxtaposition-
notation) for two related, but different, things: an operation on two strings
and an operation on two languages. This should not cause confusion
assuming you know what type of objects are being talked about.

• Here is a very common source of confusion: in a concatenation xy there are
no “markers” to say where x ends and y begins. So for example, the string
aba is (i) the concatenation of a with ba, and also (ii) the concatenation of
ab with a, and also (iii) the concatenation of aba with λ, and so forth.

• Suppose you are given two languages A and B, and you want to know
whether some string z is in AB. In principle this means looking at all the
different ways that z can be broken down as a concatenation xy, and then
checking whether, for any of these ways, we have x ∈ A and y ∈ B.

• Another overloaded notation: we write A∗ for the Kleene-closure of A and
we write Σ∗ for the set of all strings. But this is a suggestive overloading.
And anyway if you view Σ as being the language consisting of the set of
characters considered one-element strings, then the Σ∗ notation does the right
thing even when viewed as a Kleene-closure.

2named for Stephen Kleene, a pioneer of the subject. Everyone pronounces his last name
“cleany.” Except Kleene himself, who pronounced his name “clay-nee”.

29

2 STRINGS, LANGUAGES, AND REGULAR EXPRESSIONS

• Whenever you see the “*” exponent, it means “zero or more” iterations of
something. In particular we always include the empty string in any A∗.

• To poke further at the delicious possibility for confusions involving /0 and λ,
we will note that /0∗ is precisely {λ}. Do you see why that is the case?

2.3.1 Examples

Here are some very simple examples, given just to exercise the definitions.

Let Σ be the alphabet {a,b,c}, and let A,B,C,D,andE be the following languages

A = {a}, the language whose only string is the length-1 string a

B = {b}, the language whose only string is the length-1 string b

C = {a,b}, the language consisting of the two strings a and b

D = the set of all strings of odd length

E = the set of all strings of even length
/0 = the empty language.

Then

• AB = {ab}

• AC = {aa,ab}

• CC = {aa,ab,ba,bb}

• A∗ = {λ,a,aa,aaa, . . .}, the infinite language consisting of all strings of as

• A∗∪B∗= the infinite language consisting of strings that are either all as or all bs

• (A∪B)∗ = the set of all strings over {a,b}.

• DD = E−{λ}

• D∗ = Σ∗

• E∗ = E

• (AΣ∗) = the set of strings starting with a

• (AΣ∗)∩E = the set of even-length strings starting with a

• Σ∗(AΣ∗) = the set of strings in which an a appears

30

2 STRINGS, LANGUAGES, AND REGULAR EXPRESSIONS

2.4 Regular Expressions and Pattern Matching

Regular expressions are a formalism used for matching. A regular expression E
can be seen as a search pattern: given such an expression and a string x we can ask
whether x matches E. A classical use case is that x is a text file and E captures a
search we want to perform. A more recent use case is when x is a DNA or protein
sequence.

Below we define the syntax of regular expressions over a given alphabet Σ. Each
regular expression E determines a language L(E). These are the strings that
“match” E.

2.4 Definition. Let Σ be an alphabet. The regular expressions over Σ and the
languages they denote are defined inductively as follows.

• For each a ∈ Σ, a is a regular expression.
It denotes the one-element language consisting of the length-1 string a:
L(a) = {a}.

• λ is a regular expression.
It denotes the one-element language consisting of the empty string λ:
L(λ) = {λ}.

• /0 is a regular expression.
It denotes the empty language: L(/0) = the empty set.

• If E1 and E2 are regular expressions then (E1∪E2) is a regular expression.
It denotes the union of the languages of E1 and E2: L(E1 ∪ E2) =
L(E1)∪L(E2).

• If E1 and E2 are regular expressions then (E1E2) is a regular expression.
It denotes the concatenation of the languages of E1 and E2: L(E1E2) =
L(E1)L(E2).

• If E is a regular expressions then E∗ is a regular expression.
It denotes the Kleene closure of the language of E: L(E∗) = L(E)∗.

Caution. Be sure to make the distinction between a regular expression, a syntactic
object, and the language it denotes.

For example when we write, above, L(E1E2) = L(E1)L(E2), the expression E1E2
found on the left-hand-side is the syntactic combining of two expressions, while
the right-hand-side L(E1)L(E2) refers to the language operation of concatenation.
A similar remark applies to the expressions denoting Kleene-closure.

31

2 STRINGS, LANGUAGES, AND REGULAR EXPRESSIONS

When we write L(E1 ∪E2) = L(E1)∪L(E2), the expression E1 ∪E2 found on the
left-hand-side is the syntactic combining of two expressions, while the right-hand-
side L(E1)∪L(E2) refers to the language operation of union.

To help see the difference notice that there can be many different regular
expressions denoting the same language (for example E ∪ /0 will certainly denote
the same language as E). In fact Section 2.6 has lots more examples.

Syntax Conventions As usual we use parentheses in the concrete syntax as needed.
To avoid a riot of parentheses we adopt the conventions that (i) the star has higher
precedence than ∪ and concatenation; (ii) concatenation has higher precedence
than ∪. We also take advantage of associativity of concatenation and union and
treat them, syntactically, as multi-arity operations. So for example, instead of
writing the official

((ab)(c∗))∪d

we may write
abc∗∪d

2.5 Examples. Fix the alphabet Σ = {a,b}.

• a∗ denotes the set of all finite sequences of as (including the empty string)

• (a∪b)∗ denotes the set of all finite strings over {a,b}

• a∗∪b∗ denotes the set of all bitstrings that are either all-a or all-b.

• (a∪ b)∗b(a∪ b)∗b(a∪ b)∗ denotes the set of all bitstrings with at least two
occurrences of b.

• ((a∪b)(a∪b))∗ denotes the set of all even-length bitstrings.

• (a∪ b)∗aab(a∪ b)∗ denotes the set of all bitstrings with the string aab as a
substring.

• (ab∪ b)∗(λ∪ a)∗ denotes the set of bitstrings that do not have aab as a
substring.

The last two examples suggest an interesting question. If E is a given regular
expression, must there always be a regular expression E ′ that denotes the
complement of the language that E denotes? Based on the operations that regular
expressions provide, this would seem to be unlikely (they are all “positive” in
the sense that combining two regular expressions always yields one that matches
more strings than the original). But amazingly, the answer is yes, for every
language denoted by a regular expression there is a regular expression denoting
its complement. But it will take some work for us to show this.

32

2 STRINGS, LANGUAGES, AND REGULAR EXPRESSIONS

In practice you will see the phrase “regular expression” used to describe more
general expressions than we have defined above. See Section 11.5.2 for a
discussion, after we’ve explored regular expressions a bit more.

2.5 Languages vs Expressions

There are two points to be aware of here, each very important.

Expressions Are Not the Same as Languages There is a difference between a
language, which is a (possibly infinite) set of strings, and an expression, which is
little finite chunk of syntax. Expressions are what we can write down, send to one
another, use as input to programs, etc. Languages live in the mathematical universe
and, if they are infinite, cannot be directly examined, transmitted, or computed
over.

Some Languages Cannot be Named by Expressions Every regular expression
names a language, but we will see later that not every language can be described in
this simple inductive way, that is, not every language can be described by a regular
expression.

Regular expressions describe the languages you get using union, concatenation,
and Kleene-star starting only with the empty language and singleton languages.
That is, we start with the simplest possible languages we can understand:
/0,{a}, and {λ}, then see what we can get by building up from these using the
“regular operations” of union, concatenation, and Kleene-star.

But it makes perfect sense to talk about, for example, XY even when X and Y are
arbitrary languages.

For example, let P = {10,11,101,111, . . .} be the set of bit strings coding a prime
number. This P is a perfectly good language, but one can show that there is no
regular expression you can write down that matches P.

2.6 Algebraic Facts About Languages

You are already familiar with some routine facts about languages that arise just
because they are sets. Some examples are the commutativity of ∪ and of ∩, the
fact that X ∩ (Y ∪Z) = (X ∩Y)∪ (X ∩Z) and so forth.

33

2 STRINGS, LANGUAGES, AND REGULAR EXPRESSIONS

But there are other facts that arise that only make sense because our languages are
sets of strings with their inherent operations of concatenation and Kleene-star. For
example, the fact that connection is associative: (XY)Z = X(Y Z).

2.6 Example. Here is a set of laws that hold between languages.

E ∪ (F ∪G) = (E ∪F)∪G

E(FG) = (EF)G

E ∪F = F ∪E

E ∪E = E

E ∪ /0 = E

E /0 = /0E = /0

Eλ = λE = E

E /0 = /0E = /0

E(F ∪G) = EF ∪EG

(F ∪G)E = FE ∪GE

λ∪EE∗ = λ∪E∗E = E∗

and the rules

F ∪EG⊆ G implies E∗F ⊆ G

F ∪GE ⊆ G implies FE∗ ⊆ G

The above are all true equations about all languages. Most of them are easy to see
just from the definitions of union, concatenation, etc. Others may seem obscure.
But there is a reason that those particular equations and rules are presented. The
answer is that any equation about languages that is universally true follows (in a
way that can be made formal, omitted here) from this set of laws. A proof of that
is beyond the scope of this course.

If we rewrite a regular expression E into another regular expression E ′ using the
equations corresponding to the laws in then we can be sure that L(E) = L(E ′).

For example we know that a∗(b∪ (ac)) and a∗b∪ a∗ac define the same language,
due to the language equality X(Y ∪Z) = XY ∪XZ

2.7 Example. Suppose x is any string over some Σ, say x = c1c2 . . .cn where each
ci ∈ Σ. Then x itself can be viewed as a RegExp, since each of the ci is one of the
base cases in the definition of RegExp, and x is their concatenation. Of course this
RegExp denotes the singleton language {x}.

To be perfectly precise, when we view x as a regular expression we are really speak-
ing of the fully-parenthesized iteration of concatenations (. . .((c1c2)c3) . . .cn). But
there is no need to be that pedantic: we just write c1c2 . . .cn.

A takeaway from Example 2.7 is that we could have taken as one of the base-
cases for the definition of RegExps that for any string x ∈ Σ∗, x is a regular

34

2 STRINGS, LANGUAGES, AND REGULAR EXPRESSIONS

expression. And L(x) = {x}. Would that be better? It’s a matter of taste. Some
people might find that definition more natural (we don’t tend to care much about
1-element strings, do we?) But some people might be drawn to having a “minimal”
set of basic things, just single chars from Σ, and getting more complex things
automatically.

In that spirit, see Exercise 35.

2.7 A Typical Proof About Languages

It may be that you are not experienced in writing proofs. Here’s some advice. The
only way to learn how to write proofs well is practice, guided by examples. One
guideline that you will find very useful is: be very explicit, at each stage of a proof,
about what your strategy is. That is, use lots of “here is what we now know, and
here is what we are going to do next” statements. These are an aid to your reader,
first of all. But also, such “scaffolding” will help you structure your proof and keep
the logic correct.

Here we present, as an example, a proof of a simple set-theoretic statement. Pay
attention to how much of the proof is devoted to those organizing assertions.

To prove:

A(B∪C) = AB∪AC

Proof.

We show that

1. A(B∪C)⊆ AB∪AC and

2. AB∪AC ⊆ A(B∪C)

Proof of 1:

Let w be an arbitrary element of A(B∪C); we want to show that w ∈ AB∪AC. By
definition of concatenation, w can be written as w1w2 with w1 ∈A and w2 ∈ (B∪C).
Thus w2 ∈ B or w2 ∈C. So there are two cases:

• if w2 ∈ B: then w1w2 ∈ AB. It follows that w1w2 ∈ AB∪AC

• if w2 ∈C: then w1w2 ∈ AC. It follows that w1w2 ∈ AB∪AC

35

2 STRINGS, LANGUAGES, AND REGULAR EXPRESSIONS

Since the result holds in each case, we are done.

Proof of 2:

For the second, let w be an arbitrary element of AB∪AC; we want to show that
w ∈ A(B∪C). There are two cases:

• if w2 ∈ AB: then by definition of concatenation, w can be written as w1w2
with w1 ∈ A and w2 ∈ B. Then w2 ∈ (B∪C). It follows that w, which is
w1w2, is in A(B∪C)

• if w2 ∈ AC: then by definition of concatenation, w can be written as w1w2
with w1 ∈ A and w2 ∈ C. Then w2 ∈ (B∪C). It follows that w, which is
w1w2, is in A(B∪C).

Since the result holds in each case, we are done.

36

2 STRINGS, LANGUAGES, AND REGULAR EXPRESSIONS

2.8 Exercises

Exercise 21. What’s the difference between an alphabet and a language?

Exercise 22. Is {λ} a language? Is { /0} a language? Is /0 a language?

Exercise 23. Consider the union operation on languages. Is it associative? Is it
commutative? Does it have an identity element, ie a language X such that for all
languages A we have X ∪A = A and A∪X = A?

Answer the same questions for intersection. Answer the same questions for
concatenation.

Exercise 24. Suppose that: Σ is an alphabet, x and y are strings over Σ, A and B are
languages over Σ. Recall that λ denotes the empty string.

Which of the following assertions make sense and which are nonsense? We mean
“nonsense” in the syntactic sense: the assertions don’t “type-check”. For example
“17⊆ 23” is nonsense because ⊆ is a relation between sets, and 17 and 23 are not
sets.

1. x∪ y

2. xA

3. xy ∈ (A∪B)

4. A⊆ B

5. A ∈ B

6. /0 ∈ A

7. /0⊆ A

8. λ ∈ A

9. λ⊆ A

10. x ∈ A∗

11. x⊆ A

12. x⊆ A∗

13. x⊆ Σ∗

14. A⊆ Σ

15. A∗ ⊆ Σ

16. A⊆ Σ∗

17. A∗ ⊆ Σ∗

18. x ∈ Σ∗

Exercise 25. 1. Can a language be infinite?

2. Can an element of a language A⊆ Σ∗ be infinite?

3. Does it make sense to talk about taking the union of two strings?

Exercise 26. Let A = {aa,bb} and B = {λ,b,ab}

1. List the strings in the set AB

2. List the strings in the set BB

3. Is abb in BA? How about bba? How about aa?

4. How many strings of length 6 are there in A∗?

37

2 STRINGS, LANGUAGES, AND REGULAR EXPRESSIONS

5. List the strings in B∗ of length 3 or less.

6. List the strings in A∗B∗ of length 4 or less.

Exercise 27. Under the lexicographic order of the strings in {0,1}∗, what number
string is 101? How about 0001?

What is the 99th string?

Exercise 28. Prove or disprove

1. A(B∪C)⊆ AB∪AC

2. A(B∪C)⊇ AB∪AC

3. A(B∩C)⊆ AB∩AC

4. A(B∩C)⊇ AB∩AC

Hint. Three of those are true and one is false.

Exercise 29. For each part decide if there can be languages A and B with given
property. If so, give a specific example, if not, explain why not.

1. AB = A

2. AB = /0

3. AB = BA

4. A∗ = A and A 6= Σ∗

5. AA = A.

6. AA⊆ A but AA 6= A.

7. AA 6⊆ A

8. A⊆ AA but AA 6= A.

9. A∗ ⊂ A, where ⊂ means proper subset

Exercise 30. Let A and B be arbitrary languages.

1. Prove (A∪B)∗ = A∗(BA∗)∗

38

2 STRINGS, LANGUAGES, AND REGULAR EXPRESSIONS

2. Prove or disprove: (A∪B)∗ = B∗(AB∗)∗

Exercise 31. Fix Σ = {a,b}.

For each given regular expression E and string x decide whether x ∈ L(E). Defend
your answer.

(This exercise is partly just to get you familiar with thinking about regular
expressions, but its devious secondary purpose is to persuade you that deciding
matching for regular expressions seems to be a hard problem. So you will suitably
impressed when you see fast algorithms to do it.)

1. E is a∗ba∗b(a∪b)∗

(a) Is ab in L(E)?

(b) Is aaabbaaa in L(E)?

(c) Is babab in L(E)?

2. E is a∗(a∗ba∗ba∗)∗

(a) Is ab in L(E)?

(b) Is aaabbaaa in L(E)?

(c) Is babab in L(E)?

3. E is (b∪ab)∗(λ∪a)

(a) Is ab in L(E)?

(b) Is aaabbaaa in L(E)?

(c) Is babab in L(E)?

Exercise 32. For each of the following regular expressions, give two strings which
are in the language they define, and give two strings which are in not the language
they define. Assume that the alphabet Σ is always {a,b}.

1. a∗b∗

2. a(ba)∗b

3. a∗∪b∗

4. (aaa)∗

39

2 STRINGS, LANGUAGES, AND REGULAR EXPRESSIONS

5. aba∪bab

6. (λ∪a)b

Exercise 33. For each of the following regular expressions α give a shortest non-λ
string in L(α). (There may be more than one answer to a given question...)

1. (a∪bb)a∗b.

2. (bb∪ (ab∪ba)(aa∪bb)∗(ab∪ba))∗

3. ((aa∪bb)∗∪ (aab∪bba)∗)∗

Exercise 34. Fix Σ = {a,b}. For each language K ⊆ Σ∗ described below, construct
a regular expression E with L(E) = K.

1. The set of strings of odd length.

2. {x | x does not contain ba}

3. {x | x has odd length and contains ba}

4. {x | x does not contain aaa }

5. {x | x contains aa at least twice} (Be careful about the string aaa: we do
want to include this.)

6. The set of strings that contain exactly three occurrences of b.

7. The set of strings starting with a and ending with bb.

8. The set of strings that contain the substring abb.

Exercise 35. Show that we actually don’t need to allow λ as a basic regular
expression. That is, there is a regular expression E constructible using the other
regular expression operators, such that L(E) = {λ}

Exercise 36. Fix Σ = {a,b,1,2,−}. (Think of this little Σ as standing in for a
richer alphabet that has all the digits 0–9, and all the letters).

Pick a programming language you know, inspired by that, make up a rule for
what strings should be considered legal identifiers. Write a regular expression that
matches precisely the legal identifiers.

40

2 STRINGS, LANGUAGES, AND REGULAR EXPRESSIONS

Exercise 37. Fix Σ = {0,1,2, . . .9,−, .}. Think of the “-” as being the minus sign
and the “.” as the dot in a floating point number.

Write a regular expression matching the strings that denote a floating-point number.
If you have any questions about what should be legal (such as “-0” or whatever)
do not fret about these. Just make up a rule that is reasonable and keep going. The
point is just to see how regular expressions can be used to make such definitions.

Exercise 38. The syntax for regular expressions does not explicitly provide for
intersection nor for complement. But it is an amazing fact that these operations
can be simulated (on a case-by-case basis) by pure regular expressions as we have
defined them. In this exercise you are asked to anticipate this general result, by
doing some specific examples (just by being clever).

1. For each of the languages in Examples 2.5, give a regular expression for the
complement of that language.

2. For each pair of languages in Examples 2.5, give a regular expression for the
intersection of those languages.

Some of these might be hard. If you get stumped, that’s ok: as we develop
the theory of regular expressions we will see how to solve problems like this
algorithmically, that is, without having to be clever!

Exercise 39. Adapted from Kozen [Koz97] For each pair of regular expressions
below, say whether they are equal (i.e., denote the same language). If so, give a
proof. If not, give an example of a string in one but not the other.

1. (0∪1)∗ and 0∗∪1∗

2. 0(120)∗12 and 01(201)∗2

3. /0∗ and λ∗

4. (0∗1∗)∗ and (0∗1)∗

5. (01∪0)∗0 and 0(10∪0)∗

Exercise 40. Adapted from Kozen [Koz97] For each pair of regular expressions
below, there are four possible relationships between them:

(i) they denote the same language

41

2 STRINGS, LANGUAGES, AND REGULAR EXPRESSIONS

(ii) the language denoted by the first expression is a proper subset of the
language denoted by the second expression

(iii) the language denoted by the second expression is a proper subset of the
language denoted by the first expression

(iv) neither of the languages denoted is a subset of the other

State which of these is true for each pair. If (i) holds give a proof. If (ii) or (iii)
holds, give a string in one set and not the other. If (iv) holds, give two strings
showing that.

1. /0∗ and λ∗

2. (a∪b)∗ and a∗∪b∗

3. (ab)∗a and a(ba)∗

4. (bba)∗bb and bb(abb)∗

5. (a∗b∗)∗ and (a∗b)∗

6. (ab∪a)∗ and (ba∪a)∗

7. a∗ba∗b(a∪b)∗ and (a∪b)∗b(a∪b)∗b(a∪b)∗

8. a∗ba∗b(a∪b)∗ and a∗(a∗ba∗ba∗)∗

Exercise 41. Closure under reverse

Prove that if L is regular then so is LR (the set of reversals of string in L), using
regular expressions. That is, suppose you are given a regular expression denoting
L and show how to write a regular expression denoting LR. Your construction
should be a recursive algorithm over regular expressions.

Exercise 42. Let A and B be languages. Suppose you have available an algorithm
DA which, given any string w, will answer “yes” or “no” as to whether w ∈ A.
Further suppose you have an algorithm DB will can test membership in B in the
same way.

Give pseudocode for an algorithm E to solve the following problem.

Concatenation Testing

INPUT: a string w

QUESTION: is w ∈ AB?

42

2 STRINGS, LANGUAGES, AND REGULAR EXPRESSIONS

Exercise 43. Let A be a language and suppose you have available an algorithm DA

which, given any string w, will answer “yes” or “no” as to whether w ∈ A.

Give pseudocode for an algorithm E to solve the following problem.

Kleene-star Testing

INPUT: a string w

QUESTION: is w ∈ A∗?

Exercise 44. A language L is said to be idempotent if LL⊆ L. In this problem you
will prove that (modulo a detail about λ) for any A, A∗ is the smallest idempotent
language containing A.

Specifically, prove the following hold for any language A.

1. The language A∗ is idempotent.

2. If B is any idempotent language with A⊆ B and λ ∈ B, then A∗ ⊆ B.

Exercise 45 (A useful equation). Let A, B and C be arbitrary languages. Prove:

if B ∪ AC ⊆C then A∗B⊆C

Hint.. To say that x ∈ A∗B is to say that for some k, x ∈ AkB. So another way to
express the result is to say that forall k, AkB ⊆ C. Now, prove that statement by
induction on k.

Exercise 46. The following result is known as Arden’s Lemma [Ard61].

Theorem. Let A be a language such that λ /∈ A. Then the equation X = AX ∪B
has the unique solution X = A∗B.

We will prove this result a little later, when we need to use it. For now, as good
practice,

1. Verify the result for yourself in several cases (make up sample A and B and
check the solution).

2. Suppose we removed the condition “λ /∈ A”. Would it still be true that A∗B
is a solution to the equation? Give an example to show why the condition is
needed.

43

3 CARDINALITY

3 Cardinality

Everyone knows what it means to say that A and B “have the same size” when A
and B are finite sets. The big idea in this section is to develop a sensible way of
talking about this idea when A and B are allowed to be infinite sets. The important
thing is that the theory developed here applies uniformly to both finite and infinite
sets.

The ideas are due to the mathematician Georg Cantor. Do yourself a favor and
have a look at the first few paragraphs of the Wikipedia article on Cantor: http:
//en.wikipedia.org/wiki/Georg_Cantor. It’s interesting and poignant to
read about the reactions of Cantor’s contemporaries to his work.

We use the technical term cardinality to remind ourselves that we are working with
a precise mathematical concept; hopefully we can avoid getting overly influenced
by naive intuitions about the “size” of infinite sets.

The big idea is to say that the cardinality of A is less than or equal to the cardinality
of B just in case we can map A into B in a one-to-one fashion. For this we will
write A � B. That looks like an ordering relation, and indeed we will see that
behaves a lot like an order, but one way it is different from the orderings you may
be familiar with is the fact that A� B and B� A certainly won’t imply that A = B.
We can certainly have injective functions back-and-forth between two sets without
them being the same set! Still, it is worth being able to record that A and B can be
injected into each other, so we introduce the notation A≈ B for this.

3.1 Key Definitions

3.1 Definition (Cardinality). Let A and B be arbitrary sets.

• We define A� B, pronounced the cardinality of A is less than or equal to the
cardinality of B, to mean there is an injective function from A to B.

• We define A ≈ B, pronounced A and B have the same cardinality, to mean
that both A� B and B� A hold.

• We define A≺ B, pronounced the cardinality of A is less than the cardinality
of B, to mean A� B but not B� A.

This is equivalent to saying that there is an injective function from A to B,
but there can be no injective function from B to A. When A is not empty, it is
also is equivalent to saying that there is an surjective function from B to A,
but there can be no surjective function from A to B.

44

http://en.wikipedia.org/wiki/Georg_Cantor
http://en.wikipedia.org/wiki/Georg_Cantor

3 CARDINALITY

The set N of natural numbers is a useful “benchmark” infinite set.

3.2 Definition (Countable and Uncountable). A set A is countable if A � N. A is
uncountable otherwise.

Note that any finite set is countable. Sometimes we may say that a set A is
countably infinite to mean that it is countable, and not finite. 3

The case of finite sets

As a warm-up, let’s see what the definition of cardinality yields when we restrict
attention to finite sets. As you can easily see, when A and B are finite, to say that
there is an injective function from A to B, that is, to say A � B, is equivalent to
saying that the number of elements in A is no more than the number of elements in
B. So to say that there is an injective function from A to B and there is an injective
function from B to A, that is, to say A≈ B, is equivalent to saying that A and B have
the same number of elements.

The reason to define cardinality the way did is that it allows us to compare sets
without having to use numbers. And the reason for that is precisely that we can
talk about functions between infinite sets even though we can’t count them using
numbers.

3.2 Basic Tools

The following lemma is a super-convenient tool. We proved it in Lemma 1.6, but
it is worth repeating here.

Lemma. Let A and B be sets, with A not empty. There is an injective function from
A to B if and only if there is an surjective function from B. A.

This means that when A is not empty, A � B if and only if there is a surjective
function from B to A.

Notice that the set A is infinite precisely if N� A.

The notations for � and ≺ give the impression that these relation behave like
orderings. But just using an “ordering-like” notation doesn’t prove anything! Let’s
explore, and see which properties that orderings typically have are enjoyed by �.

Certainly the relation � is reflexive. (Why?) Next, let’s show that the relation � is
transitive.

3Some authors reserve the word countable for infinite sets that are �N, in other words, for them,
finite sets are not called “countable. But the more inclusive terminology here is more typical.

45

3 CARDINALITY

3.3 Lemma. If A� B and B�C then A�C.

Proof. The result follows readily from the fact that the composition of injective
functions is injective. Since A � B then there is an injective f : A→ B. Since
B�C then there is an injective g : B→C. The function (g◦ f) : A→C is injective,
which means A�C, as desired. ///

How about antisymmetry? Is it the case that if A� B and B� A then A = B? No,
certainly not. That what the relation ≈ is all about.

So far we have said that � is a preorder. Is it a total order? That is, do we have
that for any two sets A and B, either A� B or B� A (or both)? The answer is yes,
but it is quite a deep result. We won’t need to discuss this further, but it is worth
knowing.

How about the relation ≺? It is not reflexive, by definition. It is transitive, as you
can prove as an exercise (Exercise 47).

The next section, 3.3, will give lots of examples of sets X such that X � N,
that is, countable sets. We do not have any examples yet of infinite sets A and
B with A ≺ B, that is, of two infinite sets A and B where there is no possible
injective function from B to A. If there were not such examples, this whole
subject of cardinality would be dumb. But it takes a really deep idea to exhibit
such a phenomenon: this was Cantor’s brilliant insight. You can skip ahead to
Section 3.4 below to be reassured that we aren’t spinning our wheels, or you can
tackle Section 3.3 to get more practice with cardinality first.

3.3 Some Examples

1. Very easy examples: {a,b,c} ≈ {1,3,5}; {a,b,c} � {1,3,5,100};
indeed {a,b,c} ≺ {1,3,5,100}; {1,2, . . .210} ≺ N.

2. N� Z Proof: the function f : N→ Z defined by f (n) = n is injective.

More generally, whenever A ⊆ B then we have A � B, via the function that
maps any a ∈ A to itself.

3. Let E = {0,2,4, . . .} be the set of even natural numbers. Then E ≈ N.
Proof: we have to show E �N and N� E. The first is true since E ⊆N. The
second is witnessed by the function f : N→ E defined by f (n) = 2n.

46

3 CARDINALITY

4. Z�N Proof : the function f :Z→N defined by f (z)=
{

2z z≥ 0
−(2z+1) z < 0

is injective.

Thus: Z is countable.

5. N ≈ Z. This is a re-statement of two facts we just established, that N � Z
and Z� N.

6. N2 ≈ N. (Here N2 = N×N denotes the set of ordered pairs (a,b) of natural
numbers.)

Proof: First, to see that N�N2, we consider the function f : N→N2 defined
by f (z) = (z,0). [Of course there is nothing special about the use of “0” here
. . .]. This is clearly injective.

Next, to see that N2 � N we use the function g : N2 → N defined by
g(x,y) = 2x3y. Check for yourself that g is indeed injective; the crucial fact
is the unique factorization property of the integers.

The fact that N2 � N says that N2 is countable.

7. We can generalize the previous example. Let Nk = N×N×·· ·×N denote
the set of ordered k-tuples. Then Nk ≈ N.

Certainly N � Nk, by the injective function mapping n to (n,0, . . .0). To
show Nk � N, we define a function g : Nk→ N as follows. Let pi denote the
ith prime number, so that p0 = 2, p1 = 3, p5 = 13 and so on. Then define
g(x0,x1, . . . ,xk−1) = 2x03x1 . . . pxk−1

(k−1).

Thus: Nk is countable.

8. Z2 � N.

Proof: we have shown that Z� N. By Exercise 8 we conclude that Z2 � N2

So Z2 � N2 � N using part 6, and so by Lemma 3.3 we have Z2 � N.

Thus: Z2 is countable.

9. Z2 ≈Q.

First, to show Q� Z2. It will be easiest to exhibit a surjective function from
Z2 to Q. Suppose we have a pair (p,q) ∈ Z2. We can think of this as the
rational number p

q . Be careful: two different fractions a
b and b

c can denote
the same rational number, namely if ac = bd. This means that the function
f : Z2→ Q defined by f (p,q) = p

q is not injective. But that doesn’t matter,
it is clearly surjective. So this function f witnesses the fact that Q� Z2.

47

3 CARDINALITY

Now, to show that Z2 � Q, we could try to construct explicitly an injective
function from Z2 to Q (or a surjective function from Q to Z2). Or we can be
clever (= lazy), and chain together things we already know. We We already
showed above that Z2 � Z. And we certainly know that Z � Q, because
Z⊆Q. So Z2 � Z�Q and we can apply Lemma 3.3 to conclude Z2 �Q.

The fact that Q� N says that Q is countable

3.4 Example (The set of non-negative rational numbers is countable). Let Q+

stand for the set of all non-negative rational numbers. Note that each r ∈ Q+ can
be written as as fraction p

q where p and q are natural numbers. Of course a single
r can be written as a fraction in many ways: 1

2 and 2
4 and 17

34 all denote the same
rational number, for example, but this will not matter to us.

Claim. Q+ is countable.

Proof. To show that the set Q of rational numbers is countable, i.e., to show that
Q+ � N, it suffices to construct an surjective function h : N→Q+. Define h by

h(n) =
{ p

q if n is of the form 2p3q

0 otherwise

Note that the definition of h makes sense because every n has a unique prime
factorization, so that it is well-defined whether n is of the form 2p3q or not, and if
it is, then p and q are uniquely determined. Thus h really is a function. And it is
surjective by virtue of the fact that every non-negative rational can be written as p

q
for some p and q. ///

The fact that a given r can be written as a fraction in many ways means that the
function h is not injective (which is fine).

3.4 Uncountable sets

It is time for some examples of uncountable sets.

Let B = {0,1}N denote the set of all functions from N to {0,1}. Such a function
is conventionally called an “infinite bitstring.”

3.5 Theorem. The set B of infinite bitstrings is uncountable.

48

3 CARDINALITY

Proof. The proof technique is called “diagonalization.”

We prove that any function g : N → {0,1}N must fail to be surjective. Let an
arbitrary g : N→{0,1}N be given. Note that for any i∈N, g(i) is an infinite string.
Claim: the following infinite string β is not in the range of g:

β(i) =
{

0 the ith entry of g(i) is 1
1 the ith entry of g(i) is 0

An equivalent, more compact, definition way of expressing the above is just

β(i) = 1−g(i)(i)

To see that β is not in the range of g, we show that for each n, β cannot be g(n). But
it is easy to check that β differs from g(n) in the nth place: β was built expressly to
satisfy this condition. ///

3.6 Check Your Reading. Prove that the {0,1}∗ of all finite bitstrings is
countable.

Now notice that an infinite bitstring is nothing more than a characteristic function
whose domain is N, that is, characteristic function for a subset of N. So what we
proved just then was the following.

3.7 Corollary. The set Pow(N) of all subsets of the natural numbers is
uncountable.

So what we have so far is a hierarchy, with finite sets having smaller cardinality
than N, and then N having smaller cardinality than Pow(N). Are there any sets
with larger cardinality than Pow(N)?

Yes. In fact, no matter what set A you start with, you can always construct a larger
one: namely, Pow(A).

3.8 Theorem (Cantor). Let A be any set. Then A≺ Pow(A).

Proof. We first observe that A � Pow(A) by virtue of the injective function
f : A→ Pow(A) defined by f (a) = {a}.

To complete the proof that A ≺ Pow(A) we show that Pow(A) � A is false. To do
this, we show that there can be no function g : A→ Pow(A) that is surjective. So
let g : A→ Pow(A) be arbitrary; we claim that there is some element of Pow(A),

49

3 CARDINALITY

that is, some subset of A, that is not in the range of g. Here is the definition of one
such set, call it C (in honor of Cantor):

x ∈C if and only if x 6∈ g(x)

To justify that this works, we must argue that for any a ∈ A, the set g(a) is not C.
So let an arbitrary a be given, we want to show that g(a) 6=C. Well, either we have
a ∈ g(a) or not:

• If a ∈ g(a) then by the definition of C given above, a /∈ C. So g(a) and C
differ as to whether a is a member, so g(a) is not C.

• If a /∈ g(a) then by the definition of C given above, a ∈ C. So g(a) and C
differ as to whether a is a member, so g(a) is not C.

So no matter what a is, g(a) is not C. Thus C is not in the range of g, that is, g is
not surjective. ///

It is absolutely essential to note that the above proof works uniformly for any set
A whatsoever, in particular whether A is finite or infinite. For example, Cantor’s
theorem is the tool to prove that for any set A at all, there can be no surjective
function from A to the set of subsets of A.

3.9 Check Your Reading. Make a specific (small) finite set A. Write down A and
Pow(A) on a sheet of paper. Now invent any function g : A→ Pow(A) by drawing
arrows. Trace through the proof of Cantor’s Theorem for the g you invented, and
see for yourself that you are building a subset of A not in the range of g.

3.10 Check Your Reading (Very Highly Recommended). Look at Cantor’s
Theorem in the special case where A is N. Make sure you see that the proof of
Cantor’s Theorem is the same proof idea as the proof of Theorem 3.5 (keep in mind
the association between characteristic functions and subsets).

As a immediate consequence of Cantor’s Theorem we have

3.11 Corollary. If A is infinite then Pow(A) is uncountable.

Proof. Cantor’s Theorem says that A≺Pow(A). If Pow(A) were countable then we
would have Pow(A)� N. Thus A≺ N, which is a contradiction since we assumed
A infinite. ///

50

3 CARDINALITY

3.5 Tools for Showing Countability

Suppose you’d like to show a certain set A to be countable. Here is a menu of
useful facts, collected as Lemmas.

3.12 Lemma. A subset of a countable set is countable.

Proof. Suppose A ⊆ B and suppose B is countable. Then there is an injective
f : B → N. The inclusion function i : A → B is injective. The composition of
injective functions is injective, so f ◦ i : A→ N shows A to be countable. ///

3.13 Lemma. If A1,A2,A3, . . .Ak is a finite family of countable sets then the
Cartesian product A1×A2×A3×·· ·×Ak is countable.

Proof. To show A1×A2×A3× ·· · ×Ak countable we use the result of part 7 of
Section 3.3. That is, we know that N×N×N×·· ·×N is countable, so all we have
to do is find an injection g from A1×A2×A3×·· ·×Ak into N×N×N×·· ·×N.

Since we are assuming that each Ai is countable we know that for each i there is
an injection fi : Ai→ N. So we just take the product of those functions, that is we
define f : (A1×A2×A3×·· ·×Ak)→ (N×N×N×·· ·×N) by

f (a1, . . . ,ak) = (f1(a1), . . . fk(ak))

It’s easy to see that this is injective, based on the fact that each fi is injective. ///

3.14 Lemma.

1. If A1,A2,A3, . . . is a family of countable sets indexed by the natural numbers
then the union

⋃
{A1∪A2∪A3∪ . . .} is countable.

2. If A1,A2,A3, . . .Ak is a finite family of countable sets then the union
{A1∪A2∪A3∪·· ·∪Ak} is countable.

Proof. Since each Ai is countable, for each i there is an injection fi : Ai→ N. We
want to glue these functions together to make a single function mapping the union
of the Ai into N. We need to take care of the fact that a given a in the union might
be in more than one of the Ai. That’s not such a problem: for any a in the union
there is a least i such that a ∈ Ai, so we can imagine our new function doing the
same thing to a as fi does. If we just do that we will have defined a function from
the union to N. But that is not good enough, because that function is unlikely to be
injective: we can certainly imagine some a ∈ A17 and a′ ∈ A23 such that f17(a) and
f23(a′) are the same value.

51

3 CARDINALITY

So instead, we define different functions hi : Ai→N, namely hi(a) = p fi(a)+1
i . That

is, take the function fi and spread it out over N by ensuring that all the values
lie on the powers of the ith prime number. Certainly each hi is an injection. But
even better, for different i and j, the values hi takes on never intersect with the
values that h j takes on. (Do you see why we set hi(a) = p fi(a)+1

i rather than simply
hi(a) = p fi(a)

i ?)

So now we can define h :
⋃
{A1 ∪A2 ∪A3 ∪ . . .} → N by h(a) = hi(a) where i is

least such that a ∈ Ai. This is an injection, so
⋃
{A1∪A2∪A3∪ . . .} is countable.

The second part is conceptually just a special case of part 1. Strictly speaking it
isn’t a special case but the very same proof works, we just don’t need to use all the
prime numbers in the argument.

///

3.15 Check Your Reading. Suppose A⊆ B and A is uncountable. Explain why B
is uncountable.

3.6 Cardinality and Formal Languages

In this section we apply the ideas of cardinality (cf. Section 3) in the setting of
formal languages.

Recall the construction we did in Section 2.2. For any finite alphabet Σ we put Σ∗

into a natural bijective correspondence with N. This proves:

3.16 Theorem. Let Σ be a finite alphabet. The set Σ∗ is countable.

Proof. Start with any total order on the alphabet Σ, and extend it to the
lexicographic order on Σ∗. This define a surjection from N to Σ∗. ///

So, the set of all finite strings over a finite alphabet is countable. What if we keep
the alphabet finite but allow the strings to be infinitely long? We addressed this in
Theorem 3.5.

This leaves one question unexplored: what about the set of finite strings over a
infinite alphabet? Is this countable or uncountable?

First note that if the alphabet itself were uncountable then surely the set of strings
over this alphabet in uncountable (after all there are uncountable many strings
of length one!). So the interesting question is: suppose Σ is a countaby infinite
alphabet. Is the set Σ∗ of finite strings over Σ countable or uncountable?

52

3 CARDINALITY

To make things slightly more concrete, we might as well assume that Σ is just N. So
the question becomes: Is the set of all finite strings of natural numbers countable
or uncountable? The answer is: countable. You are asked to prove this carefully
in Exercise 55.

Summarizing, we have that

• The set of all finite strings over a finite alphabet is countable.

• The set of all infinite strings over a finite alphabet is uncountable.

• The set of all finite strings over a countably infinite alphabet is countable.

The next result is really just a variation on Cantor’s Theorem, but it is worth seeing
the proof idea exercised again.

3.17 Theorem. Let Σ be any non-empty alphabet. The set L of all languages over
Σ is uncountable.

Proof. We prove that any function g : N→ L must fail to be surjective. Let an
arbitrary g : N→ L be given. Note that for any i ∈ N, g(i) is a language.

We make use of the fact that the set of all strings over Σ can be enumerated as

x0,x1,x2, . . .

This is a consequence of Theorem 3.16: formally we have a function from N
surjective Σ∗ and when we write xi above we are referring to the string that is
the image of i under this function.

Claim: the following language B is not in the range of g. B is defined by

xi ∈ B if and only if xi 6∈ g(i)

To see that B is not in the range of g, we show that for each string n, B cannot be
g(n). But it is easy to check that the language B differs from the language g(n): the
string xn will be in one of these languages but not the other. ///

Please make sure you see that the proof of Theorem 3.17 and the proof of Cantor’s
Theorem (Theorem 3.8) are really the same proof, just applied in a slightly different
setting. Just keep in mind the association between characteristic functions and
subsets.

53

3 CARDINALITY

3.7 The Continuum Hypothesis

Cantor’s Theorem says that A ≺ Pow(A). When A is a finite set this expresses
something familiar: if A has n elements then the power set of A has 2n elements,
and n < 2n.

Are there sets strictly “in between” A and Pow(A) in the sense of cardinality? For
finite sets, sure: whenever A has more than one element, there are sets B with
A ≺ B ≺ Pow(A), simply because there are numbers strictly in between n and 2n

whenever n is bigger than 1.

But now consider an infinite set, say N to be specific. Question: are there any sets
B strictly “in between” N and Pow(N) in the sense of cardinality? That is, is there
a set B whose cardinality is greater than that of the natural numbers and less than
that of Pow(N): N ≺ B and B ≺ Pow(N)? Since we know that Pow(N) ≈ R, an
equivalent way to ask this question is: is there a set B whose cardinality is greater
than that of the natural numbers and less than that of the real numbers?

The assertion that there are no such sets is called The Continuum Hypothesis
(abreviated CH). That name stems from the fact that the real number line is
sometimes called the “continuum.”

Cantor (and others) tried hard to prove Continuum Hypothesis. He couldn’t prove
it, though, and for good reason: it was eventually shown that the Continuum
Hypothesis can neither be proven nor disproven from the usual axioms of
mathematics. In logic jargon, the Continuum Hypothesis is independent of the
axioms of mathematics. You can do math under the assumption that CH is true
or you can do math under the assumption that it is false, and neither of these
assumptions (once you pick one!) leads to a contradiction. And in fact there are
certain statements P that are proven in mathematical journals to be true under the
assumption of CH, while ¬P is proven under the assumption that CH is false. So
you can choose whether to believe P or to believe ¬P!

3.8 Summary

What you need to know to solve most problems are the following two techniques.

• To prove a set countable: To prove that a set X is countable, it suffices to do
one of the following things

– Define some injective function f : X→C, where C is some set that you
have already shown to be countable, or

54

3 CARDINALITY

– Define some surjective function f : C→ X , where C is some set that
you have already shown to be countable

If you can take the set C to be N, the natural numbers, you’re always good,
since N is countable by definition.

• To prove a set uncountable: To prove that a set Y is uncountable, it suffices
to do one of the following things

– Define some injective function f : U→Y , where U is some set that you
have already shown to be uncountable, or

– Define some surjective function f : Y →U , where U is some set that
you have already shown to be uncountable

There is not a canonical, “by definition” uncountable set, but two standard
choices for U are (i) the set Pow(N) of subsets of the natural numbers, and
(ii) R, the set of real numbers. These sets are well-known to be uncountable.

3.18 Check Your Reading. [This is just a “replay” of the summary advice given
above but it is repeated here to stress how important it is as a tool.]

Fill in each of the blanks below with one of the words countable, uncountable,
injective, or surjective.

• To prove that a set X is countable, it is sufficient to define some
function f : S→ X, where S is some set already known to be .

• To prove that a set Y is uncountable, it is sufficient to define some
function f : S→ Y , where S is some set already known to be .

• To prove that a set X is countable, it is sufficient to define some
function f : X → S, where S is some set already known to be .

• To prove that a set Y is uncountable, it is sufficient to define some
function f : Y → S, where S is some set already known to be .

55

3 CARDINALITY

3.9 Exercises

Exercise 47. Prove that if A≺ B and B≺C then A≺C.

Hint. This isn’t trivial: you can use Lemma 3.3 to make some progress but note
that part of what you need to establish is that C � A fails!

Exercise 48. What does Cantor’s Theorem say when A = /0? (What is Pow(/0)
anyway?)

Exercise 49. Prove that the set Q of all rational numbers is countable.

Exercise 50. Let (0,1) be the open interval of real numbers between 0 and 1 (not
inclusive). Let (1,∞) be the open interval of all real numbers greater than 1. Prove
that (0,1) ≈ (1,∞). Hint: there is a familiar mathematical function that does the
trick.

Exercise 51. Show that (0,∞) ≈ R. Hint: (0,∞) � R is easy (see a previous
problem). To show R� (0,1), there is a familiar mathematical function that works.

Show that (0,1)≈ R.

Exercise 52. Show that Pow(N)≈ [0,1]. Here [0,1] is the closed real interval from
0 to 1. Hint. Think characteristic functions for Pow(N) and base-2 notation for
[0,1.

Exercise 53. Prove that the set of all finite subsets of N is countable.

Hint. One way to do this is to associate with each finite subset of N a finite string
over (say) {0,1}. If you can do this in an injective way this suffices, since {0,1}∗
is countable.

Another way to do this is to (injectively) associate with each finite subset of N a
natural number. The 2x3y trick we used for showing the countability of N2 could
provide inspiration. . .

Exercise 54. For each of the following sets, decide if they are countable or
uncountable. Then prove your answer (perhaps using the advice in 3.18).

1. Pow(N), the set of subsets of N,

2. {0,1}∗, the set of all finite strings over the alphabet {0,1}.

3. N∗, the set of all finite sequences drawn from N = {0,1,2, . . .}.

56

3 CARDINALITY

Exercise 55. . Let A be a countably infinite set. Prove that the set A∗ of all
finite strings over A is countable.

Hint. Use Exercise 3. Don’t reinvent the wheel.

4. The set S of all bitstrings, whether finite or infinite:

S = {σ | σ is a finite bitstring or an infinite bitstring}

5. The set E of all strings in {0,1}∗ that have even length.

6. The set Y of all functions from N to N. That is, Y = { f | f : N→ N}

Exercise 56. Prove that the set of all regular expressions over the alphabet {0,1}
is countable.

This question is slightly subtle. Make sure you understand that a regular expression
is a finite sequence of ASCII symbols. Don’t confuse a regular expression E with
the language (set of strings) that e denotes!

57

4 TREES

4 Trees

Since things below are subtle and can get confusing, we will strive for a high level
of formality, to avoid any ambiguity. In particular we will need to agree on a
definition of when a set is finite and when a set is infinite. We take for granted that
for any given natural number n we understand what it means for a set to have n
elements. Consequently we say that set S is finite when there exists an n ∈ N such
that S has n elements. Set S is is infinite when there is no n ∈ N such that S has n
elements, or equivalently, for every n ∈ N, we can find more than n elements in S.

4.1 Definition. A tree is a set of nodes, partially ordered by a relation “ancestor
of” with a unique least element, called the root, with the property that the ancestors
of each node are well-ordered (that is, there is no infinite chain going toward the
root).

The size of a tree is the number of nodes.

The 0th level of a tree T consists of the root; the (n + 1)st level is the set of
immediate successors of nodes at the nth level, if there are any. If there are no
such nodes we say that the (n+1)st level is empty.

The depth of a tree T is the maximum level that is not empty, if there is such a
maximum. If level n is non-empty for each natural number n, we say that T has
infinite depth.

A path or branch is a (finite or infinite) sequence of node 〈x0,x1, . . . ,xi, . . .〉 such
that

• x0 is the root,

• for all i, xi+1 is a child of xi, and

• if the sequence is finite, then the last node is a leaf.

Strictly speaking the above definition only covers countable trees. It is rare for
uncountable trees to occur anywhere but in set theory research, so we will blissfully
ignore uncountable trees.

There is alternative definition of (countable) tree that is more concrete and so
sometimes useful. To motivate it, suppose you have a tree in the sense above.
We can assign to each node an “address” which is a sequence of natural numbers
by the inductive rule: the root has address 〈〉; if a node has address α and has n+1
children then they have the addresses obtained by extending α in the obvious way:
α0,α1, . . .αn. So each tree generates a set of addresses. Observe that the address
of a node at level l is a sequence of length l.

58

4 TREES

4.2 Check Your Reading. Draw some trees and label the nodes with addressees.

Having assigned addresses to tree nodes, we might as well just say that the tree is
the set of addresses it generates. That will be the alternate definition of tree.

Now, not just any set of sequences will do to be considered as a set of addresses
for a tree. They have to “hang together” in the sense we describe below in
Definition 4.3.

Let’s fix some notation. Let N be the set of natural numbers {0,1,2, . . .}. Let N∗
be the set of finite sequences of natural numbers. If α and β are elements of N∗ say
that α is a prefix of β, written α < β, if β is obtained by adding some elements to
the end of α.

4.3 Definition (Trees, version 2). A tree T is a subset of N∗ satisfying the following
two properties

• If α < β and β ∈ T then α ∈ T , and

• If αk ∈ T then for every k′ ∈ N with k′ < k, αk′ ∈ T . (Here k′ < k is taken in
the ordinary sense of natural-number ordering).

There’s a theorem in the background here saying that indeed the two definitions
are equivalent but we won’t bother to be formal here. Still:

4.4 Check Your Reading. Convince yourself that the second definition really does
capture your intuitions about what a tree is.

4.5 Check Your Reading. N∗ is a tree. Draw it.

4.6 Definition (Branching). Let T be a tree.

• If a given node x has at most n successors then we say that x is n-branching;
if x has infinitely many successors we say x is infinite branching.

• If T satisfies

for all nodes x there exists an n such that x is n-branching

then we say that T is finite branching.

• If T satisfies

there exists an n such that for all nodes x, x is n-branching

59

4 TREES

then we say that T is n-branching.

Note that being n-branching for a particular n is a much stronger condition
than being finite-branching. To be n-branching means that this same n has to
simultaneously bound the numbers of children for all nodes. If T has infinitely
many nodes there is no reason to think that such a bound must exist, even if each
node x has its own bound. Another way to put this point is to observe that to
say that T is finite-branching is merely to say that no single node has infinitely
many children: this is not the same as saying some single number bounds all the
branchings.

4.1 König’s Lemma

Before reading this section you should do Exercise 61 at the end of this section.

When trees are known to be finite-branching, life is very different! Each of the
statements in Exercise 61 is true under the hypothesis of finite-branching. It all
comes down the following famous and important theorem:

4.7 Theorem (König’s Lemma). Let T be a finite-branching tree. If T has infinitely
many nodes then T has an infinite branch.

Proof. We build our infinite branch 〈x0,x1, . . . ,xi, . . .〉 as follows. Start with the x0
being the root. Now, there are finitely many immediate subtrees below the root.
Since there are infinitely many nodes in T , there must be infinitely many nodes in
at least one of these subtrees. Let x1 be the root of any one of these infinite subtrees.
Now since there are infinitely many nodes in the subtree rooted at x1, and since x1
has only finitely many immediate subtrees, there must be infinitely many nodes in
at least one of these subtrees. Choose x2 to be the root of any one of these infinite
subtrees. Continue in this way, maintaining the invariant that the current node xi

has infinitely many nodes below it, and choosing xi+1 to be some child of xi which
itself has infinitely many nodes below it.

We can maintain the invariant precisely because each node has finitely many
children. ///

Note that in order for the above proof to go through we did not require that the
tree be n-branching for any particular n. All that mattered was that we never found
ourselves looking at a node with infinitely many children.

Do Exercise 62 now!

60

4 TREES

4.2 Application: multiset induction

A multiset is, informally, a set with repetitions allowed. This won’t do as a proper
definition of course, so formally we say that a multiset S over a set X is a function
S : X → N. Intuitively, S(x) is the number of copies of x in S. A multiset S is finite
if there are only finitely many x such that S(x)> 0.

We will continue to speak and write informally, and for example refer to the
multiset {3,17,17,17,0,0,17}. This is the same multiset as {0,17,17,17,17,0,3},
different from the multiset {0,17,3}, and is formally the function that maps 0 7→ 2,
3 7→ 1, 17 7→ 4 and maps every other number to 0.

4.8 Definition. The multiset game is as follows. Start with a finite multiset S0 of
natural numbers. At stage t of the game we will have a multiset St and we may
proceed to build St+1 by (i) removing some occurrence of an element n, and (ii)
replacing it by any finite number of occurrences of elements strictly less than n.

For example, we might have

S0 ≡ {0,1,17,100}
⇒ {0,1,16,16,16,16,16,16,100}
⇒ {0,1,16,16,16,16,16,16,99,99,99}
⇒ { 1,16,16,16,16,16,16,99,99,99} . . .

4.9 Lemma. The multiset game always terminates after a finite number of moves.

Proof. We use König’s Lemma. Associated with any play of the game we construct
a tree T whose nodes (other than the root) are labeled with natural numbers. If
S0 is the multiset {a1, . . . ,ak} then initially T has a root and k children labeled,
respectively, a1, . . .ak. At stage t of the game the leaves of tree T will coincide
exactly with the occurrences of elements of St . And when element n is replaced
in St by new elements n1, . . .np, we add n1, . . .np, as new leaves of T , children of
node n.

Note that at each stage the non-leaf nodes of T are in one-to-one correspondence
with the moves of the game so far. So it suffices to show that we can never build an
infinite tree by playing the game. But any such tree is finite branching. And each
branch in the tree finds its labels to be strictly decreasing as we move down from
the root. So each branch must be finite. So König’s Lemma immediately implies
that T must be finite. ///

61

4 TREES

This Lemma has obvious generalizations to multisets over well-founded orders
other than the natural numbers. It is a powerful tool for showing that certain
processes must terminate. We will see an example when we argue that certain
tableaux constructions must terminate.

4.3 Exercises

Exercise 57. The set of all bit strings, i.e., the set of all finite sequences of 0s and
1s is a tree. Draw it.

Exercise 58. A binary tree is a tree such that each node has either 0 or 2 children.

Suppose T is a non-empty finite binary tree. Find a formula relating the number
of leaf nodes and the total number of nodes in a finite binary tree T . Prove your
answer by induction based on the inductive definition above.

Exercise 59. Give a specific example of a tree that is finite-branching yet is not
n-branching for any n.

It may help to see these two assertions written in a more formal notation.

T is n-branching: ∀x, x is n-branching

T is finite-branching: ∀x ∃n, x is n-branching

Exercise 60. Since the issue in Exercise 59 is sometimes confusing when you first
meet it, here is the same distinction in another setting.

Give an example of a simple loop, say in a C-program, whose number of iterations
depend on an integer variable x, that (i) never goes into an infinite loop, but (ii)
there is no single integer n that bounds the number of iterations uniformly across
all values of x.

Exercise 61. Here are some exercises designed to drive home the subtle
distinctions about branching we’ve been exploring.

Note: I’m aware of the fact that certain pairs of statements below are logically
equivalent in the sense that they are contrapositive of each other. Sometimes such
pairs have different intuitive force, though, so I presented them both.

1. Find a counterexample to the assertion: If T has finite depth then it has finite
size.

We might write this more formally as If there exists a d ∈ N such that T has
depth d then there exists an n ∈ N such that T has size n.

62

4 TREES

2. Find a counterexample to the assertion: If every branch in T has finite length
then T has finite depth.

We might write this more formally as If for all branchs p there is an l ∈ N
such that p has length l then there exists a d ∈ N such that all nodes are at
level ≤ d.

3. Find a counterexample to the assertion: If every branch in T has finite length
then T has finite size.

More formally: If for all branchs p there is an l ∈ N such that p has length
l then there exists a d ∈ N such that all nodes are at level ≤ d.

4. Find a counterexample to the assertion: If T has infinite size then it has
infinite depth.

More formally: If there is no n ∈ N such that T has size n, then there is no
d ∈ N such that T has depth d.

5. Find a counterexample to the assertion: If T has infinite depth then it has an
infinite branch.

More formally: If for every n ∈ N level n of T is non-empty then there is an
infinite branch in T , i.e., a branch p such that for each k ∈ Nat there are
more then k nodes in p.

6. Find a counterexample to the assertion: If T has infinite size then there is a
branch through T with infinite length.

More formally: If for every n ∈ N we can find more than n nodes in T then
there is an infinite branch in T , i.e., a branch p such that for each k ∈ Nat
there are more then k nodes in p.

7. Find a counterexample to the assertion: If each branch in T is finite then
there is a maximum branch length in T .

More formally: If for all branchs p there is an l ∈ N such that p has length
l then there exists a single number n ∈ N such that all branchs have length
≤ n.

8. Find a counterexample to the assertion: If T has branchs of arbitrarily long
length then it has an infinite branch.

More formally: If for every l ∈ N there is a branch in T of length at least l
then there is an infinite branch in T .

63

4 TREES

9. Find a counterexample to the assertion: If each branch in T has finite length
then there is a maximum branching factor.

More formally: If for all branchs p there is an l ∈ N such that p has length
l then there exists a b ∈ N such that every node has fewer than b children.

10. Find a counterexample to the assertion: If there is no maximum branching
factor in T then every branch is finite.

Exercise 62. Prove, using König’s Lemma, each of the statements in Exercise 61
under the hypothesis that tree T is finite-branching.

Exercise 63. Prove that for any multiset S over N with at least one positive entry,
there are arbitrarily long plays of the game starting with S. That is, for any S,
given any number k, there is a play of the game starting with S that makes at least
k moves. (This is easy.)

Explain why this does not contradict Lemma 4.9.

64

5 INDUCTION: DEFINING, COMPUTING, AND PROVING

5 Induction: Defining, Computing, and Proving

Induction is the crucial technique for defining functions over the natural numbers
and also for proving things about natural numbers. Perhaps even more important
for computer science is the fact that data types such as like lists and trees are defined
inductively. Once such an “inductive data type” has been defined, induction can
be used to prove things about the data. And finally we can use induction to define
programs over that data: programs defined by induction are more usually called
“recursive.” But it’s all the same idea.

We assume in these notes that you seen induction before (though you might not
feel experienced with it). So, this section is organized as a sequence of exercises.

5.1 Defining

10. Give an inductive definition of the function e(n) = 2n for n≥ 0.

11. Give an inductive definition of the function f act(n) = n! for n≥ 1

12. The the first few Fibonacci Numbers are:

1,1,2,3,5,8,13,21,34,55,89,144,233,377,610, ...

Each is the sum of the previous two.

Give an inductive definition of the function f ib(n) for n≥ 0

13. Let Dn denote the number of ways to cover the squares of a 2×n board using
plain dominos. Here, a 2×n board has 2 rows and n columns, and “domino”
is a figure comprising 2 squares, which can be oriented either horizontally or
vertically.

Check for yourself that D1 = 1, D2 = 2, and D3 = 3. (For the last case, you
could have the 3 dominoes all be horizontal, or the first row covered by a
horizontal domino and the latter two by two vertical ones, or finally have the
last row covered by a horizontal domino and the upper two by two vertical
ones . . . draw pictures!).

What’s D4? What’s D5? What’s Dn in general, based on previous values on
Dk for k < n?

14. A binary tree is a rooted tree in which every node has 0 or 2 children. These
are computer scientist trees, not graph-theorists trees, which is to say that
“left and right matter.” So there are two trees with 3 leaves, even though they
are mirror-images of each other, and isomorphic as graphs.

65

5 INDUCTION: DEFINING, COMPUTING, AND PROVING

Draw a few pictures of small binary trees. There’s only one tree that has 1
node; and only one tree with 2 nodes. As we said, there are two trees with 3
nodes. How many can you make with 4 nodes?

Let t(n) count the number of binary trees with n leaves. Thus t(1) =
1, t(2) = 1, t(3) = 2. Convince yourself that t(4) = 5. Now given an
inductive definition of t(n).

15. Given a list n items to be combined by a binary operator ⊕, let b(n) be the
number of different ways we can group them. For example x⊕ y⊕ z can be
grouped as ((x⊕ y)⊕ z) or as (x⊕ (y⊕ z)) so b(3) = 2.

Given an inductive definition of b(n). You should start with “b(2) = 1 and
b(3) = 2.”

5.2 Proving

16. Prove that 1+2+3+ · · ·+n = 1
2 n(n+1)

17. Prove that 2+4+6+ . . .2n = n(n+1)

18. Prove that for all n≥ 4, 2n < n!.

19. Prove that f ib(0)+ f ib(1)+ · · ·+ f ib(n) = f ib(n+2)−1

20. Refer to part 14 for the definition of binary tree.

For the small examples you drew there count the number of leaves and count
the total number of nodes. You will be moved to make the conjecture: A
binary tree with k leaves has 2k−1 nodes. Prove that.

21. Consider a square chessboard, with one square missing; let us call such a
board “defective.” A “trimino” is made up of 3 squares in an L-shape. We
are interested in when a defective board can be tiled (completely covered
without overlapping) by triminos.

Clearly a 2× 2 board can. Clearly a 3× 3 board cannot (there are only 8
squares to be covered, not a multiple of 3). Experiment with some defective
4 boards and convince yourself that they can all be covered. Now prove that
fact. Try very hard in your argument to make use of the fact that the 4× 4
board (before removing a square) can broken into 4 boards of size 2×2 each
. . .

Now prove carefully by induction on n: any 2n× 2n defective chessboard
can be tiled with L-shaped trominos.

66

5 INDUCTION: DEFINING, COMPUTING, AND PROVING

Hint: For the inductive case, with a board size of 2n+1× 2n+1, divide the
board into four quadrants. Note that each quadrant has size 2n. The tricky
part is that the induction hypothesis only applies to one of them, the quadrant
where the original missing square lives. Find a way to place a trimino so that
you can then use the induction hypothesis to all quadrants and thus tile the
whole board.

22. By the way, do you see that in exercise 21 you proved, as a side-effect, that
for every n, 3 divides 2n× 2n− 1? Go ahead and prove that arithmetic fact
directly, inspired by your proof there (but don’t actually quote the chessboard
result).

23. You might think that proof by induction is just making obvious things hard,
in the sense that once you verify a statement for lots of cases, it is obviously
true and shouldn’t require a fussy proof.

But consider the quantity n2− n+ 41. Plug in n = 1,2,3,4... until you get
tired. Notice that each of these results is a prime number. In fact for every n
up to n = 40 you will get a prime. But what happens for n = 41?

Moral: verifying finitely many cases prove nothing!

24. Some time ago (like the 20th century) postage stamps existed in small
denominations, such as 3 or 5 cents. Prove that any amount of postage
greater than 4 cents can be made with a sufficiently large supply of 3 and
5 cent stamps.

Formally, prove that for all n≥ 8 the equation

3x+5y = n

can be solved with non-negative x and y.

25. Suppose you can get fried chicken in buckets of size 4 or 7. Find a number
n such that any chicken order of size at least n can be filled exactly.

Do this with some other choices of numbers instead of 4 and 7. Can you do
it with, say, 4 and 6? Can you say something in general about which pairs of
numbers will work?

26. An example of needing a “strong” induction hypothesis.

(a) Try to prove the following statement by induction on n:
For every n, the sum 1 + 3 + 5 + 7 + . . . (2n-1) is a perfect square
You will fail.

67

5 INDUCTION: DEFINING, COMPUTING, AND PROVING

(b) Now try to prove the following stronger statement by induction on n:
For every n, the sum 1 + 3 + 5 + 7 + . . . (2n-1) is in fact n2 itself
Note that this statement is indeed stronger then the original, since
it implies the original, but says more. And: this time you will
succeed in your proof, precisely because you have a stronger induction
hypothesis.

27. Another example of the power of a “strong” induction hypothesis:

Prove that for n≥ 0, f ib(3n+2) is even.

Hint. Prove the following stronger statement (by induction)

for n≥ 0, f ib(3n) is odd and f ib(3n+1) is odd and f ib(3n+2) is even.

28. Let a and b be distinct alphabet symbols. Prove that there is no string x such
that ax = xb.

68

6 DETERMINISTIC FINITE AUTOMATA

Part II

Regular Languages

6 Deterministic Finite Automata

6.1 Definition (Deterministic Finite Automaton). A deterministic finite automaton
(DFA) is a 5-tuple 〈Σ,Q,δ,S,F〉, where

- Σ is a finite set, called the input alphabet

- Q is a finite set, called the set of states

- s ∈ Q is a distinguished state called the start state

- F ⊆ Q is a distinguished set of states, called the accepting states

- δ : Q×Σ→ Q is the transition function.

When δ(q,c) = p it is often more convenient to use the notation q c−→ p.

Given an input string x ∈ Σ∗, a DFA can embark on a computation, or run, as
follows.

6.2 Definition. Let M = 〈Σ,Q,δ,s,F〉 be a DFA, and let x = a0a2 . . . ,an−1 be a
string.

A run of M on x is a sequence of n+1 states 〈q0, . . . ,qn〉 such that

• q0 = s, the start state of M;

• for each 0≤ i≤ n−1, qi
ai−→ qi+1 is a transition in δ

Note that the concatenation of the symbols in the labelled transitions yields x

It is suggestive to write

q0
a0−→ q1

a1−→ . . .
an−1−→ qn or q0

x−→−→ qn

A run is accepting if qn ∈ F.

We say that M accepts x if the run of M on x is accepting.

69

6 DETERMINISTIC FINITE AUTOMATA

It is easy to see that for a given DFA M and word x there exactly one run of M on
x. From the definition it follows that for any DFA, a run on the empty string λ is
simply the length-1 sequence 〈s〉.

6.3 Definition. Let M be a DFA. The language L(M) accepted by M is the set of
strings accepted by M:

L(M)
def
= {x ∈ Σ

∗ | the run of M on x is accepting.}

Some authors say: “the language accepted by M” to mean the same thing as “the
language accepted by M”

We will shortly consider a nondeterministic variation on DFAs, in which there
can be more than one run, or no runs, on a given string. By phrasing the notion
of acceptance the way we have, we will not need to change the formal definition
when we consider the more general case.

Sometimes we will want to consider the behavior of a DFA beginning at a state
q that is not the actual start-state of the automaton. It is natural to use the same
notation

q a1−→ q1
a2−→ . . .

an−→ qn or q x−→−→ qn

in such a case. However we will only use the term “run” for a sequence that begins
at the start state.

The δ̂ function

Following up on the last remark, it is sometimes convenient to have a notation for
the state that a DFA ends in, starting at some state q and processing string x.

6.4 Definition (The δ̂ function). Let M = 〈Σ,Q,δ,S,F〉 be a DFA. The function
δ̂ : Q×Σ∗→ Q is defined by recursion:

δ̂(q,λ) = q

δ̂(q,xa) = δ(δ̂(q,x),a) for x ∈ Σ
∗, a ∈ Σ

If you read other books on automata, be aware that they may use the δ̂ notation
exclusively.4 At any rate, these two notations mean exactly the same thing:

q x−→−→ qn and δ̂(q,x) = qn

4The truth is that the δ̂ notation is more convenient for DFAs but the “runs” notation is more
convenient for NFAs, coming up shortly . . .

70

6 DETERMINISTIC FINITE AUTOMATA

6.1 Regular Languages

6.5 Definition. A language A⊆ Σ∗ is regular if there is a DFA that accepts it, that
is, a DFA M such that A = L(M).

Not all languages are regular, see Section 6.2. In Section 14 we will be able to give
a complete answer to the question, “which languages are regular?”

6.6 Example. The set A def
= {x ∈ {a,b}∗ | the length |x| of x is odd} is regular.

Here is a DFA that accepts A.

• Σ is (of course) {a,b}

• Q is {s0,s1}

• the start state s is s0

• the set of accepting states is {s1}

• the transition function δ is

{((s0,a),s1), ((s0,b),s1), ((s1,a),s0), ((s1,b),s0)}

That’s a verbose way to write a DFA. Here is a more compact notation, in which
we display the δ function as a lookup table, and indicate the start and accepting
states as part of the table.

a b
start→ s0 s1 s1

accepting s1 s0 s0

But for small DFAs, we can capture the same information in a picture, like this:

s0start s1

a,b

a,b

We have introduced a shorthand here: in pictures we can capture more than one arc
between the same states by label a single arc with more than one symbol.

71

6 DETERMINISTIC FINITE AUTOMATA

6.7 Example. The set B def
= {x | x has an odd number of bs} is regular; here is a

picture of a DFA that accepts B.

s0start s1

b
a

b

a

6.8 Example. The set C def
= {x | x ends with a b} is regular; here is a DFA that

accepts C.

t0start t1

b
a b

a

6.9 Example. The set D def
= {x | x has an odd number of bs or ends with a b} is

regular; here is a DFA that accepts D.

q0start q2

q1 q3

a

b

a

b

a

b a

b

This is not too difficult an example, still you might wonder if there is a way to
build DFAs that is somewhat systematic, relying less on inspiration. There are
indeed some tricks, for example we will revisit this language in Example 7.5 later.

6.10 Example. The set E of strings over the alphabet {a,b} which contain aba as
a (contiguous) substring is regular; here is a DFA recognizing E.

72

6 DETERMINISTIC FINITE AUTOMATA

s0start s1 s2 s3

b

a

a

b a

b

a,b

6.11 Example. This example shows that DFAs can do counting in modular
arithmetic. The set F def

= {x | the number that x codes in binary is divisible by 3 }
is regular; here is a DFA M that accepts F .

s0start s1 s2

0
1 0

1 0

1

To say that this works is to say that

for every bit string x, if x codes a number that is equal to 0 mod 3 then
the run of M on x will end in state q0.

To justify that this works, we establish a stronger claim. Namely

for every bitstring x, if x codes a number that is equal to i mod 3 then
the run of M on x will end in state qi.

Now, if we prove this then we certainly will have proved our main assertion, since
the main assertion is a special case of the claim. But the neat thing is that the
second, stronger, claim above is easier to prove than the simpler, first claim.

6.2 Not All Languages are Regular

Not every language is regular. We have to do some work before we can actually
prove certain languages to be non-regular. But it will be helpful for your intuition
have a sneak peek at some examples.

6.12 Example. Fix Σ to be the alphabet {a,b}. None of the following languages
is regular.

73

6 DETERMINISTIC FINITE AUTOMATA

1. Eq = {anbn | n≥ 0}

2. Eq2 = {x | x has an equal number of as and bs}

3. A = {an | n is a perfect square}

4. B = {an | n is a perfect cube}

5. C = {an | n is a power of 2}

6. {x ∈ {0,1}∗ | x codes a prime number in binary}

7. the set D of strings of as and bs whose length is a perfect square

8. E = {ww | w ∈ Σ∗}

9. F = {wwR | w ∈ Σ∗}

If we wanted to presume to find a common theme in those examples, we might
say, “DFAs can’t count.” But it’s not quite that simple, since we have seen, in
Example 6.11 that DFAs can count in modular arithmetic...

6.3 A Peek Ahead: Regular Expressions and DFAs

We have already defined regular expressions. It would be pretty bad choice of
terminology if the languages defined by “regular expressions” were not the same
class as the “regular” languages, defined as as those defined by DFAs. In fact they
are the same. But we have to do some work to prove this, so for now we will suffer
with the anticipation.

Finite automata are concerned with accepting strings algorithmically. Regular
expressions describe languages explicitly. In the forthcoming sections we compare
finite automata to regular expressions. The main result is: regular expressions and
finite automata have the same expressive power. Specifically we will show that

• Given any regular expression E there is a finite automaton M such that
L(M) = L(E). Furthermore there is an algorithm to build M given E.

• Given any finite automaton M there is a regular expression E such that
L(E) = L(M). Furthermore there is an algorithm to build E given M.

74

6 DETERMINISTIC FINITE AUTOMATA

6.4 Exercises

Exercise 64. For each of the following languages, make an DFA recognizing it.

1. Over the alphabet Σ = {a,b}: the set of all strings whose next-to-last symbol
is a b.

2. Over the alphabet Σ = {a,b,c}: {anbmcp | n,m, p≥ 0}}

3. Over the alphabet Σ = {a,b}: {w | w contains bb as a substring}.

4. Over the alphabet Σ = {a,b}: {w | w does not contain bb as a substring}.

5. Over the alphabet Σ= {a,b}: {w |w every odd position of w is the symbol b}.

6. Over the alphabet Σ= {a,b}: {w | the third symbol from the end of w is an a}.

7. Over the alphabet Σ = {a,b}: /0, the empty set.

8. Over the alphabet Σ = {a,b}: {λ}. This is the language consisting of one
string, the empty string λ.

Exercise 65. In this exercise you will generalize Example 6.11.

For a given k let Σk denote the alphabet {0,1, ...,k−1}. For given k and m let Lk,m
be the set of strings x over Σk that, when viewed as a representing an integer in
base-k notation, code a multiple of m. Show that each Lk,m is regular, by showing
that there is a DFA M with L(M) = Lk,m.

It is simplest to agree that the empty string codes the number 0.

Note. You can’t give a concrete DFA as an answer, of course. What this asks for is
a general description of how to build such a DFA given k and m.

Hint. I suggest first solving the problem fixing m = 2 and letting k vary, then fixing
k = 2 and letting m vary, then finally doing the general case.

Exercise 66. Induction practice I (from HMU) Let M be a DFA and let q be a
certain state of M. Suppose that for every alphabet symbol c we have

δ(q,c) = q

Prove that for all input strings x we have

δ̂(q,x) = q

Hint: Use induction on the length of the string x; apply the definition of δ̂ from
page 16.

75

6 DETERMINISTIC FINITE AUTOMATA

Exercise 67. Induction practice II (from HMU) Let M be a DFA and let c be a
certain alphabet symbol. Suppose that for every state q we have

δ(q,c) = q

Prove that for each state q and integer n we have

δ̂(q,cn) = q

Hint: Use induction on n; apply the definition of δ̂ from page 16.

Now show that

either {c}∗ ⊆ L(M) or {c}∗∩L(M) = /0

Exercise 68. Induction practice III Prove that for all states q and strings x and y,

δ̂(q,xy) = δ̂(δ̂(q,x),y).

Prove this by induction on |y|.

76

7 DFA COMPLEMENT AND PRODUCT

7 DFA Complement and Product

An important consideration in building DFAs, just as with building any kind of
system, is developing tools for building them in a modular way, that is building
complex DFAs from simpler ones.

7.1 The Complement Construction

Suppose A is regular. Can we say that the complement A is also regular?

That’s a pretty “mathematical-sounding” question. An equivalent question that
feels more “computational” is: suppose M is a DFA, can we build a DFA whose
language is the complement of L(M)?

The answer is yes, and it is easy to establish.

7.1 Definition (Complement Construction). Let M = (Σ,Q,δ,s,F) be a DFA.
We build a new DFA M′, called the complement of M, as follows: M′ =
(Σ,Q,δ,s,(Q−F)).

Be careful not to read too much into the word “complement” here. A DFA is not
a set and so M′ is not the complement of M in the same sense that you know from
set theory. We use the word “complement” as a name to suggest the purpose of the
construction, to take the complement (in the traditional sense of set theory) of the
language of M. Indeed:

7.2 Theorem. When M′ is constructed from M as in Definition 7.1, L(M′) = L(M).

Proof. It is obvious that for any x ∈ Σ∗ and any states p and q, p x−→−→ q in M if and
only if p x−→−→ q in M′. So taking p to be the start state, we see that the run of M on
x ends at the same state as the run of M′ on x. Since q will be an accepting state in
M′ if and only if it is not an accepting state in M, the result follows. ///

So now have the result we seek.

7.3 Theorem. If A is regular then A is regular.

Proof. Directly from Theorem 7.2. ///

77

7 DFA COMPLEMENT AND PRODUCT

7.2 The Product Construction

The product construction is a central idea, that gives us both intersection and union
for regular languages.

7.4 Definition. Let M1 and M2 be DFAs over the same input alphabet:

M1 = (Σ,Q1,δ1,s1,F1)

M2 = (Σ,Q2,δ2,s2,F2)

We build a new DFA P, called the product of M1 and M2, as follows.

P = (Σ,(Q1×Q2), δP, (s1,s2),(F1×F2)), where δP is given by

for each c ∈ Σ, and states p1, p2,q1,q2,

(p1, p2)
c−→ (q1,q2) precisely when

p1
c−→ q1 in δ1 and

p2
c−→ q2 in δ2.

This construction builds a DFA that accepts the intersection of the languages
accepted by the original DFAs. Before proving that, let’s see an example.

7.5 Example. Recall Example 6.9 which showed a DFA for the language of strings
that have an odd number of bs and end in b. Let M and N be the following DFAs.
The first accepts strings with an odd number of bs. The second accepts strings that
end in b.

s0start s1

b
a

b

a

t0start t1

b
a b

a

78

7 DFA COMPLEMENT AND PRODUCT

The language we are interested in is precisely the intersection of the languages
accepted by these two automata. Here is the result of applying the product
construction on these automata; an automaton that accepts those strings that have
an odd number of bs and end in b.

(s0, t0)start (s1, t0)

(s0, t1) (s1, t1)

a

b

a

b

a

b

a

b

As you can check, this is the same DFA we saw in Example 6.9, except that here
the states have funny names!

Caution. As with the complement construction, be careful not to read too much
into the word “product” here. We use the word “product” as a name to suggest the
way the construction works, by taking the cartesian product of various components
of the machines. But machines are not sets, so we aren’t formally taking a cartesian
product of the machines themselves.5

Once you understand this construction it should be intuitively clear that the
following proposition is true. But we give a careful proof of correctness, as a
model for how such proofs are done.

7.6 Theorem. When P is constructed as in Definition 7.4, L(P) = L(M1)∩L(M2)

Proof. We prove the following claim: for any x ∈ Σ∗ and states p1, p2,q1,q2,

(p1, p2)
x−→−→ (q1,q2) if and only if

p1
x−→−→ q1 and

p2
x−→−→ q2.

Notice that this looks quite a lot like the definition of δ we gave for P. The
5Some authors even use the notation M1×M2 for our P above, but this is really asking for trouble.

79

7 DFA COMPLEMENT AND PRODUCT

difference is that here we speak of sequences of transitions for a string x as opposed
to single transitions for a single symbol c. So the claim is not true “by definition:”
we have to prove it.

Also note that the claim is not a claim about runs, it is more general than that: we
do not say that p1 and p2 are start states.

But after we do prove the claim, it will be true about runs in particular. And the
rest of the proof will be easy.

So, to prove the claim. There are two directions to prove, the “if” and the “only
if”. We use induction on the length of x.

• The base case: When the length is 0, x is λ, so the claim is that

(p1, p2)
λ−→−→ (q1,q2) if and only if

p1
λ−→−→ q1 and

p2
λ−→−→ q2.

– The “if” direction: If p1
λ−→−→ q1 and p2

λ−→−→ q2 then p1 = q1 and

p2 = q2. So certainly (p1, p2)
λ−→−→ (q1,q2).

– The “only if” direction: Conversely, if (p1, p2)
λ−→−→ (q1,q2) then

(p1, p2) = (q1,q2), so p1 = q1 and p2 = q2, and thus p1
λ−→−→ q1 and

p2
λ−→−→ q2.

• The inductive step: For the inductive step, we write x as cy with c ∈ Σ and
y ∈ Σ∗, and we may assume that the claim is true for y.

– The “if” direction: If p1
cy−→−→ q1 and p2

cy−→−→ q2 then in M1 we
have some p′1 with p1

c−→ p′1
y−→−→ q1; and in M2 we have some p′2

with p2
c−→ p′2

y−→−→ q2. So in P we have (p1, p2)
c−→ (p′1, p′2) [by

definition of P] and (p′1, p′2)
y−→−→ (q1,q2) [by the induction hypothesis].

Glueing these together, we have (p1, p2)
cy−→−→ (q1,q2).

– The “only if” direction: Conversely, suppose (p1, p2)
cy−→−→ (q1,q2)

By definition of P this means that for some pair (p′1, p′2) we have
(p1, p2)

c−→ (p′1, p′2)
y−→−→ (q1,q2). So we have p1

c−→ p′1 and
p2

c−→ p′2 [by definition of P], and we have p′1
y−→−→ p′1 and p′2

y−→−→ p′2
[by the induction hypothesis]. Thus p1

x−→−→ q1 and p2
x−→−→ q2 .

80

7 DFA COMPLEMENT AND PRODUCT

This finishes the proof of the claim.

Now that we have the claim we can finish the proof of the Proposition, by showing
that for any x ∈ Σ∗, P accepts x if and only if each Mi accepts x.

P accepts x if and only if there is an accepting run of P on x, iff for some
(q1,q2)∈ (F1×F2), we have (s1,s2)

x−→−→ (q1,q2). By the claim above this happens
iff s1

x−→−→ q1 and s2
x−→−→ q2, which says that x ∈ L(M1) and x ∈ L(M2). ///

Make sure you can explain why it was important in the above proof that we did not
state the claim only about runs, sequences that necessarily began at start states.

Product Construction for Union There is a closely related construction, which
builds an DFA to accept the union of languages accepted by two given DFAs.
Starting with M1 and M2 in the notation above, if we build M′ as

M′ = (Σ,(Q1×Q2), δ, (s1,s2),((F1×Q2)∪ (Q1×F2) with δ as above

so that the set of accepting states is the set of pairs (q1,q2) with at least one of the
qi accepting in its original machine, then we have

L(M′) = L(M1)∪L(M2)

7.7 Check Your Reading. Prove that L(M′) = L(M1)∪L(M2).

Hint. This is easier than you might think at first. Look at the proof of Theorem 7.6.
You only have to change a word or two!

7.3 Regular Closure: Intersection and Union

These two constructions prove the following theorem.

7.8 Theorem. If languages A and B are regular then so are A∩B and A∪B.

Proof. Immediate from Theorem 7.6 and the observation in 7.7. ///

7.3.1 Caution!

We have shown that the union of two regular languages is regular. By iterating that
argument we can conclude that the union of any finite number of regular languages
is regular. But we cannot conclude that the union of an infinite number of regular
languages is regular. If that were true, then every language would be regular!

81

7 DFA COMPLEMENT AND PRODUCT

After all, any language A = {x1,x2, . . .}, regular or not, can be written as the union
of singleton languages: A = {x1}∪{x2}∪ And each of the singleton languages
{xi} are certainly regular.

So be careful about that.

If you know about countable and uncountable sets: This is a little bit like the
danger of generalizing from the fact that the cartesian product of finitely many
countable sets is countable to the non-fact that the cartesian product of infinitely
many countable sets is countable. The latter is certainly not the case, since the
(uncountable) set of infinite bit strings is nothing more than the infinite product of
{0,1} with itself. Generalizing arguments about finite iterations of a process to
infinite iterations is fraught with peril!

82

7 DFA COMPLEMENT AND PRODUCT

7.4 Exercises

Exercise 69. Do several examples of the product construction, on small DFAs you
are familiar with. Convince yourself that you did the construction correctly, by
testing lots of input strings.

Exercise 70. Describe an algorithm for the following problem

DFA Language Difference

INPUT: two DFAs M and N

OUTPUT: a DFA D such that L(D) = L(M)−L(N)

Remember that L(M)−L(N) means L(M)∩L(N).

Exercise 71. Explain why the following language L over the alphabet Σ = {a,b,c}
is regular.

L = the set of all strings x such that x starts with a and x has even
length and furthermore either x has at least 17 cs or x does not have
length divisible by 3.

Exercise 72. Let Σ = {0,1}. Draw the obvious 2-state DFA M such that L(M) is
the set of words that end in 0. Draw the obvious 2-state DFA N such that L(N)
is the set of words that end in 1. Not that L(M)∩ L(N) = /0. Make the product
construction on M and N, obtaining a DFA P whose language is L(M)∩M(N).
Explain what is going on. (This isn’t hard.)

83

8 NONDETERMINISTIC FINITE AUTOMATA

8 Nondeterministic Finite Automata

Here is a generalization of DFAs.

8.1 Definition (Nondeterministic Finite Automaton). A nondeterministic finite
automaton (NFA) is a 5-tuple 〈Σ,Q,δ,s,F〉, where

- Σ is a finite set, called the input alphabet

- Q is a finite set, called the set of states

- s ∈ Q is a state, called the start state

- F ⊆ Q is a distinguished set of states, called the accepting states

- δ ⊆ Q×Σ×Q is the transition relation: an arbitrary set of triples (p,c,q).
Such a tuple is more suggestively written p c−→ q.

So the (only) difference between DFAs and NFAs is that for NFAs, the δ is a
transition relation, not necessarily a function. Note that since a function is a just a
certain kind of relation, a DFA is automatically an NFA.

8.1 Runs of an NFA

The definitions of run of an NFA is exactly as written for a DFA. We still say that
an accepting run of M on x is a run whose last state is an accepting state. But note
the following important differences between NFAs and DFAs.

• For an NFA N and a word x there may be more than one run of N on x.

• With an NFA N and a word x, it is possible that, as the machine “tries” to
construct a run on x, it finds itself in a state q while reading a symbol a and
there is simply not transition out of q on a, in other words, there is no state
q′ such that (q,a,q) ∈ δ. In this case we say that the machine “blocks.” We
do not call such a sequence of states an accepting run on the input: the input
has to be completely processed before we call it a run at all.

• Thus is is possible that there are no runs of N on x: this will happen if every
attempt to make a run blocks at some point. (Of course it follows that there
are no accepting runs on x.)

84

8 NONDETERMINISTIC FINITE AUTOMATA

So we have to be a bit more subtle in our notion of acceptance for an NFA.

With this in mind we make the following analogue of Definition 6.3.

8.2 Definition. Let M be an NFA. A string x is accepted by M if there exists an
accepting run of M on x. The language L(M) accepted by M is the set of strings
accepted by M:

L(M)
def
= {x ∈ Σ

∗ | there exists an accepting run of M on x}

Later in this section we will prove the following fact:

For any NFA N there is a DFA M such that L(M) = L(N).

So why do we bother to define NFAs? Because they are more convenient to
construct than DFAs. Read on.

8.2 Examples

8.3 Example. This NFA accepts the set of strings over the alphabet {a,b} which
contain aba as a (contiguous) substring.

q0start q1 q2 q3

a,b

a b a

a,b

This is good time to clarify the notion of a run. Suppose the input to the NFA is
aaba. One run is:

q0
a−→ q0

a−→ q0
b−→ q0

a−→ q0

This is not an accepting run. But the existence of such a non-accepting run does
not tell us anything about whether aaba is in L(N). Another attempt at a run is

q0
a−→ q1

???−→

which blocks, since there no transition defined out of q1 on a. This isn’t a run (on
aaba) at all!

Another run is:
q0

a−→ q0
a−→ q1

b−→ q2
a−→ q3

That’s an accepting run. Since there exists an accepting run, we say that aaba is
accepted by N, and so aaba ∈ L(N).

85

8 NONDETERMINISTIC FINITE AUTOMATA

Earlier we saw a DFA that accepts the same language. But the NFA captures more
directly what the specification of the language is.

8.4 Example. This NFA N accepts {x∈{a,b}∗ | the next-to-last symbol in x is b.}

q0start q1 q2

a,b

b a,b

It’s easy enough to make a DFA for this language. But let’s generalize this
language:

8.5 Example (The kth-to-last symbol is...). Let Σ be the language {a,b} and let
L be the set of strings whose 3rd-to-last symbol is an a. For example bbaba ∈ L,
while bbbbab 6∈ L3. It is easy to make an NFA recognizing L3:

s0start s1 s2 s3

a,b

b a,b a,b

It can
be shown that the smallest DFA for this language has 8 states. Indeed, if we wanted
to accept strings who kth-from-last input is a given symbol, the smallest DFA has
2k states. See Exercise 120, later.

Thus NFAs can be exponentially more succinct than DFAs.

8.6 Example. Let Σ = {a,b} This NFA accepts {an | n≥ 0}.

q0start

a

Of course, {an | n≥ 0} can be viewed as a language over the alphabet Σ = {a} or
as a language over a larger alphabet such as Σ = {a,b}. A picture of an NFA such
as the one given doesn’t by itself say which way to think about the language; if it
is important to know the base alphabet one must declare that independently of the
picture.

8.7 Check Your Reading. Why didn’t we make the remark about the ambiguity of
that alphabet back when we drew pictures of DFAs?

86

8 NONDETERMINISTIC FINITE AUTOMATA

8.8 Example (Running Machines in Reverse). If A is regular then so is AR, the set
of reversals of strings in A. A natural intuition about how to prove this would be to
start with a DFA M such that L(M) = a, and then construct a new DFA M′ which is
like M but runs backwards, that is, all the transition arrows are reversed. But that
doesn’t work! Several of the requirements for being a DFA are violated. On the
other hand this idea works just fine for NFAs. See Exercise 79.

8.3 From NFAs to DFAs: the Subset Construction

We have two kinds of automata we’ve been working with so far, each of which has
its charms: DFAs are a more intuitive computational model, and behave better with
respect to complement, while NFAs are more succinct and have other advantages
that we will see eventually.

We observed when we defined finite automata that DFAs are automatically NFAs.
In this section we will show that these two types of machines are actually equally
powerful, in the sense that any language accepted by an NFA is in fact recognizable
by some DFA.

You may ask at this point: “why did we bother to define these different formalisms,
if we are going to end up showing them to equivalent?” That’s a very reasonable
question. And the answer is extremely important.

Having more than one different way to define systems is very powerful. It means
that if you have a certain job to do (for example, building a system, or reasoning
about it) you get to choose which definition to use, based on which is more
convenient for you to do the job at hand. We will see lots of examples of this
as we go forward but it should already be easy to get an intuition why this is true.
Consider DFAs and NFAs, and suppose for now that we have already proved their
equivalence. If your goal is to define an automation to do a certain job, you are
likely to have an easier time of it building an NFA: you take advantage of the non-
determinism. On the other hand, if you want to prove that there can be no FA to
so a certain job, it is likely to be easier to prove that there is no DFA that works,
precisely because they are so limited. In principle one could have used NFAs or
DFAs in either situation (since theoretically they are equivalent) but as a practical
matter you—and your reader—will be better off for your having chosen one or the
other formalism.

The Construction Before stating the theorem let’s describe the construction.
Suppose N = (Σ,Q,δN ,s,F) is an NFA. We are going to build a DFA M
recognizing the same language as N.

87

8 NONDETERMINISTIC FINITE AUTOMATA

Let Pow(Q) denote the set of subsets of Q. The key idea is that a state in M is a set
of states from N. The details are in Algorithm 1

Algorithm 1: NFA to DFA
Input: a NFA N = (Σ,Q,δ,s,F)
Output: a NFA M such that L(M) = L(N)
The states of M will be elements of Pow(Q);
The start state of our M will be {s}. ;
The set F consists of those sets of N-states that contain at least one accepting

state of N.;
We define δM by

P c−→ R if there is some state p ∈ P and some state r ∈ R with p c−→ r in N.

return M = (Σ,Pow(Q),δ′,{S},F)

8.9 Theorem. Let N be an NFA. The DFA M constructed in Algorithm 1 satisfies
L(M) = L(N).

Proof. During this proof we will use capital letters to name states of the DFA M
(as we did in the algorithm) to help remind you that such a state in M began life as
a set of states in N.

To prove the theorem it suffices to establish that the following holds for any string
x. Here −→−→ means “zero or more steps of −→ .” Since there are two machines
being discussed, we use a subscript to make it clear which one we’re talking about.

Claim: P x−→−→ MR iff R = {r | ∃p ∈ P, p x−→−→ Mr}

Note that this looks just like the definition of −→ in M, except that it is about
the reflexive-transitive closure instead. And it is important to note that we are not
allowed to simply declare that the claim is true: once we have defined −→ then
−→−→ is determined, and the claim is either true or false. Before we prove that it
is true, let’s note that it is all we need to show the correctness of our construction.
Assuming the claim, we have that for any string x,

{s} x−→−→ {r | ∃s ∈ {s},s x−→−→ r in N} in other words,

{s} x−→−→ {r | s x−→−→ r in N}

Now, x is accepted by N if and only if the set on the right-hand side above contains
a state in F . But this just to say that the set on the right-hand side is in F, which is
the same as saying that M accepts x.

88

8 NONDETERMINISTIC FINITE AUTOMATA

It remains to prove the claim. We prove this claim by induction on the length of x.

When x = λ each side of the iff holds because then we have P = R.

For the inductive step, suppose that x = cy for c ∈ Σ and y ∈ Σ∗. We want to show
that

P
cy−→−→ {r | ∃p ∈ P, p

cy−→−→ r in N}

Using the definition of −→ we have

P c−→ {p1 | ∃p ∈ P, p c−→ p1 in N} . . . call this set P1

Using the induction hypothesis on y we have

P1
y−→−→ {r | ∃p1 ∈ P1, p1

y−→−→ r in N}

Putting these together we have

P
cy−→ {r | ∃p ∈ P ∃p1 ∈ P1, p c−→ p1

y−→−→ r in N}

= {r | ∃p ∈ P p
cy−→−→ r in N}

which is what we wanted.

///

8.10 Example. Here is an NFA accepting strings that end in bb.

s0start s1 s2

a,b

b b

After the subset construction, we get

[s0]start [s01] [s012]

a
b

a

b

a

b

This is the DFA you would probably write directly if given this specification.

89

8 NONDETERMINISTIC FINITE AUTOMATA

8.11 Example. Here is a slight variation on Example 8.10. Here we accept strings
that contain bb.

s0start s1 s2

a,b

b b

a,b

After the subset construction, we get

[s0]start [s01] [s012] [s02]

a
b

a

b a

b a

b

This is probably not the DFA you would probably write directly if given this
specification. If you think about it you will see that this is not the smallest DFA we
could write for this language. We’ll come back to this point, in Section 13.

8.12 Example. Sometimes an NFA will fail to be a DFA only because some
transitions are not defined (as opposed to having more than one transition for
certain inputs. It is easy to “fix” such machines by adding a non-accepting “fail”
state, and sending all the missing transitions there. It is amusing to see that the
subset construction does this same thing.

For example, here is an NFA that accepts strings that start with a.

s0start s1
a

a,b

After the subset construction, we get

[s0]start [s1] /0
a

b

a,b a,b

90

8 NONDETERMINISTIC FINITE AUTOMATA

8.4 The Product Construction on NFAs

In Section 7.2 we showed how to build a “product” of two DFAs M and N, yielding
a DFA P with L(P) = L(M) ∩ L(N), It turns out that this construction works,
without modification. As a matter of fact, the proof of Theorem 7.6 still applies,
word-for-word. In other words, nowhere in the proof of that theorem did we make
use of the fact that we were working with DFAs as opposed to NFAs.

But—in the category of “don’t jump to conclusions”—the result breaks down for
unions. That is to say, if you look at the variation on the product construction that
captures the union of DFA languages, it fails to do the right thing on NFAs. See
Exercise 78.

8.5 The Complement Construction on NFAs?

The complement construction 7.1 on NFAs fails, in the sense that swapping
accepting and non-accpepting states in an NFA does not have the effect of
complementing the accepted language. See Exercise 77.

91

8 NONDETERMINISTIC FINITE AUTOMATA

8.6 Exercises

Exercise 73. For each of the languages in Exercise 64, make an NFA recognizing
it. Yes, you already built DFAs, but here you are invited to see if it is easier to build
NFAs for them than DFAs. Convert your answer to a DFA, and compare to your
answers you gave in Exercise 64.

Exercise 74. Let K be any language containing a single string. Show that K is
regular.

Exercise 75. Let K be a finite language, that is, K is a language containing finitely
many strings. Show that K is regular.

Exercise 76. A language K is said to be co-finite if K is finite, that is, if only finitely
many strings fail to be in K.

Prove that any co-finite language is regular.

Exercise 77. Complementation and automata An important problem!

1. Let M be an NFA accepting the language L. Suppose we build the NFA M′

by using the same states and transitions as M but declaring that a state in
M′ is accepting if and only if it is not accepting in M. Show by giving a
concrete example that the language accepted by M′ is not necessarily L, the
complement of L (that is, the set Σ∗−L).

2. Show that if N is an NFA accepting the language L, then there is an NFA
accepting the language L.

3. Explain why part 2 does not contradict part 3.

Exercise 78. Here we explore the proposal to use the product construction, in the
variation that was used to capture union, but on NFAs this time. That is, suppose
M1 and M2 are NFAs, and we apply Definition 7.4, with accepting states being
those (f1, f2) such that either fi is accepting in its original NFA. This defines a
machine P which is a legal NFA.

Show by giving a concrete example that it is not necessarily true that L(P) =
L(M1)∪L(M2). So the “product construction for unions” fails for NFAs.

Can you think of a natural condition on NFAs M1 and M2 that will ensure that
the “product construction for unions” will succeed? (Saying “M1 and M2 must be
DFAs” is a boring answer . . .).

92

8 NONDETERMINISTIC FINITE AUTOMATA

Exercise 79. Reverse

If L is a language let us write LR for the language consisting of the reverses of the
strings in L. Show that if L is regular so is LR.

Hint: The basic idea was already given in the text. Start your careful proof like
this:

Let M = (Σ,Q,δ,S,F) be an NFA such that L(M) = L. We define the
automaton M′ as follows . . .

A formal proof that the machine M′ really does accept LR is not asked for here.
What is being asked for is a precise definition of M′.

Exercise 80. Regular expressions and automata I

Eventually we will show that a language can be named by a regular expression if
and only if it can be accepted by an NFA, and indeed we will show that there are
algorithms to translate back and forth. This exercise and the next are less ambitious,
they ask you to explore the correspondence intuitively, to build your intuitions.

Match each NFA with an equivalent regular expression. (From [Koz97].)

(M1)
start

a

aa

b
b

(M2)
start

b

aa

b
a

(M3)
start

b

ba

b
a

(M4)
start

a

aa

b
b

93

8 NONDETERMINISTIC FINITE AUTOMATA

(M5)
start

b

ba

b
a

• λ+a(ab∗b+aa)∗ab∗

• λ+a(ba∗b+ba)∗ba∗

• λ+a(ba∗b+aa)∗a

• λ+a(ab∗b+aa)∗a

• λ+a(ba∗b+ba)∗b

Exercise 81 (Kozen). Regular expressions and automata II Match each NFA with
an equivalent regular expression (From [Koz97].)

(N1)

start
a

ba

a

b
b

(N2)

start
a

ba

a

b
a

(N3)

start
b

ab

a

b
a

(N4)

start
a

aa

a

b
a

94

8 NONDETERMINISTIC FINITE AUTOMATA

(N5)

start
b

ba

a

b
a

1. (aa∗b+ba∗b)∗ba∗

2. (aa∗a+aa∗b)∗aa∗

3. (ba∗a+ab∗b)∗ab∗

4. (ba∗a+aa∗b)∗aa∗

5. (ba∗a+ba∗b)∗ba∗

Exercise 82. NFA simulation Given an algorithm for simulating an NFA
efficiently (that is, without constructing an equivalent DFA first). Your algorithm
should run in time O(|w||Q|2) where Q is the set of states of N.

Formally: If N be an NFA, show how to write an algorithm which on input w will
decide whether or not w ∈ L(N). If N has n states your algorithm should run in
time polynomial in n and the length of w.

Exercise 83. “For-all” NFAs

As you know, a standard NFA N accepts a string w if there exists an accepting
run of N on w. But we can imagine a new kind of finite automaton, called an
for-all-NFA. Such a machine A has the same “hardware” as an NFA:

A = (Σ,Q,δ,s,F)

as before, with δ mapping (state, symbol) pairs into sets of states. The difference
is that we declare that a string w is accepted by a for-all-NFA if every run of the
machine on w ends in a state in F .

Prove that for-all-NFAs accept precisely the regular languages.

Hint. First prove that for every regular language L there is an for-all-NFA A with
L(A) = L. Then prove that for any for-all-NFA A the language L(A) is regular. The
first part is easy. For the second part, think about the subset construction.

95

8 NONDETERMINISTIC FINITE AUTOMATA

Exercise 84. Hamming

If x and y are bit strings, the Hamming distance H(x,y) between them is the number
of places in which they differ. If x and y have different lengths then we declare
their Hamming distance to be infinite. This is an important concept in analyzing
transmission of signals in the presence of possible errors.

If x is a string and L is a language over {0,1} then we define

H(x,L) def
= min{H(x,y) | y ∈ L}

Now for any language L over {0,1} and any k ≥ 0 we may define

Nk(L)
def
= {x | H(x,L)≤ k}

For example, if L were the language {00,001} then N0(L) = L, N1(L) =
L∪ {10,01,101,011,000}, and N2(L) is the set of all bit strings of length 2 or
three except for the string 110.

Prove that if L⊆ {0,1}∗ is regular, then so is N1(L).

Is there anything special about a Hamming distance of 1 here, or is the result true
for any distance?

Hint. Suppose L is L(M) for a DFA with state set Q. Build an NFA for N1(L) with
state set Q×{0,1}. The second component tells how many “errors” you have seen
so far. Use non-determinism generously!

Exercise 85. Let Σ = {0,1}, and let Q= {q0,q1}.

1. How many DFAs are there that have input alphabet Σ and state set Q?

2. (Hard) Some of the DFAs that you just wrote accept the same language. Give
a few examples.

Now do the two things above but with arbitrary NFAs rather than DFAs.

Exercise 86. Prefixes

A string x is a proper prefix of a string z if there is a non-empty string y such that
xy = z. Suppose L is a language; we may define the following languages based on
L:

• NoPrefix(L) = {w ∈ L | no proper prefix of w is in L}.

96

8 NONDETERMINISTIC FINITE AUTOMATA

• NoExtend(L) = {w ∈ L | w is not a proper prefix of any string of L}.

Suppose L is regular. Is NoPrefix(L) guaranteed to be regular?

Suppose L is regular. Is NoExtend(L) guaranteed to be regular?

[This is a fairly hard problem.]

Exercise 87. Halves (from Sipser)

Suppose L is a language; we may define the following language based on L:

HalfL = {x | ∃y|y|= |x| and xy ∈ L}

Suppose L is regular. Is Half L guaranteed to be regular?

[This is a hard problem.]

97

9 NFAS WITH λ-TRANSITIONS

9 NFAs with λ-Transitions

An NFAλ is an NFA that, in addition to transitioning from one state to another
while reading an input character, has the capacity to transition from one state to
another without consuming any input at all. We denote such transitions, naturally,
as p→ q.

In this chapter we wil do two things.

1. Show how NFAλs do not have any more acceprting power than ordinary
NFAs, and

2. Motivate NFAλs by showing how they add convenience in building machines
to do certain jobs.

First the formal definition.

9.1 Definition (NFAλ). A nondeterministic finite automaton with λ transitions
(NFAλ) is a 5-tuple 〈Q,Σ,δ,S,F〉, where Q,Σ,s, and F are as defined for NFA,
but where δ allows, in addition to transitions p c−→ q, transitions p→ q.

A run of an NFAλ on x = a1a2 . . .an is a sequence of states 〈s0, . . . ,sk〉 such that

• so ∈ S;

• for each i≥ 0, either for some a, si
a−→ si+1 is a transition in δ or si→ si+1

is a λ transition in δ, and

• the concatenation of the symbols in the labelled (non-λ) transitions yields x

A run is accepting if sn ∈ F, M accepts x if there exists an accepting run of M on
x, and the language L(M) accepted by M is the set of strings accepted by M.

It is traditional to refer to transitions p→ q as “λ” transitions. And some authors

will actually write p λ−→ q. We don’t like this notation because it seems to suggest
that λ is an alphabet symbol (which is a common confusion). Sometimes we will
use the phrase “silent transition.”

98

9 NFAS WITH λ-TRANSITIONS

9.1 From NFAλ to NFA

Obviously any ordinary NFA can be considered an NFAλ. Our goal is to prove that
in fact our new FA model doesn’t actually add any recognizing power. That is, we
want to prove the following claim.

For every NFAλ M there exists an NFA M′ such that

1. L(M′) = L(M)

2. M′ has no λ transitions

Furthermore, there exists an algorithm to compute M’ from M.

Once we have done our work, this will show up as a Theorem.

Note that we can’t just delete λ transitions of course: we must compensate for
removing them.

9.2 Check Your Reading. Give an example of an NFAλ M with the property that
if we build M′ by simply removing λ transitions then L(M′) 6= L(M).

The strategy for building M′ from M is clever.

1. Build an auxiliary NFAλ M+;

2. Define M′ as M+ with all λ transitions deleted

The key idea of the algorithm is contained in the following lemma. It expresses
the fact that certain transformations of an NFAλ leave the language of the NFAλ

unchanged.

9.3 Lemma. Suppose NFAλ M has the transition p→ q.

If M has a transition q→ r and we build a new NFAλ by adding the transition
p→ r, the resulting NFAλ accepts exactly the same language as did M.

If M has a transition q a−→ r and we build a new NFAλ by adding the transition
p a−→ r, the resulting NFAλ accepts exactly the same language as did M.

Proof. Easy: each such added transition can be simulated by the original
transitions. ///

99

9 NFAS WITH λ-TRANSITIONS

That lemma seems to take us in the wrong direction: it adds transitions rather than
removing the ones we don’t want. But the trick is that after all such transitions have
been added, we can then just delete the bad transitions. Here is this idea expressed
as an algorithm.

In the statement of the algorithm below, observe that in building M′ from M we do
not change any components of M except the transition function δ and the accepting
set F ′.

Algorithm 2: NFAλ to NFA
Input: a NFAλ M = (Σ,Q,δ,s,F)
Output: a NFA M′ such that L(M′) = L(M)
initialize: set δ+ to be δ

repeat
if δ+ has a transition p→ q and a transition q→ r then add p→ r to δ+

if δ+ has a transition p→ q and a transition q a−→ r then add p a−→ r to
δ+

until no change in δ+;
let F ′ be F ∪{p | there is a λ transition p→ f to a state f in F} ;
let M+ = (Σ,Q,δ+,S,F ′);

define δ′ to be δ+ with all λ transitions removed ;
return M′ = (Σ,Q,δ′,S,F ′)

9.1.1 Example

9.4 Example. Let M be the NFAλ

sstart t f

a b c

Eliminating λ transitions yields the NFA

sstart t f

a

b

c

b

c

c

100

9 NFAS WITH λ-TRANSITIONS

9.5 Theorem. Algorithm NFAλ to NFA is correct:

1. the algorithm always terminates;

2. the output M′ has no λ transitions, and

3. L(M′) = L(M).

Proof.

1. Termination is easy. Having fixed Q and Σ, there are only finitely many
possible transitions that could conceivably be present in M+. (How many?)
Each iteration of the repeat loop adds one, and so there can be only finitely
many iterations.

2. The fact that the output M′ has no λ transitions is obvious from the algorithm.

3. To prove L(M′) = L(M), we first prove L(M+) = L(M), and then prove
L(M′) = L(M+).

To prove L(M+) = L(M): Since we start with δ+ = δ and we never delete
transitions, it is obvious that L(M) ⊆ L(M+). To prove L(M+) ⊆ L(M) it
suffices to prove that at each stage of the construction of the transitions δ+

the automaton at that stage accepts no new Σ+ strings. This is the content of
Lemma 9.3.

Now to prove L(M′) = L(M+): Since the transitions of M′ are a subset of
those of M+ it is obvious that L(M′)⊆ L(M+). The only interesting part of
the proof is what remains, proving L(M+)⊆ L(M′).

It suffices to prove that for any string w ∈ L(M+) there is an accepting run in
M+ that does not use λ transitions.

For this it suffices to show the following claim:

If s w−→−→ f is a accepting run of M+ on w with the least number
of transitions, then no λ transition of M+ is used.

If we establish this claim it will follow that we can just remove the λ

transitions without changing which strings are accepted, that is, that M′

accepts all the words that M+ does.

101

9 NFAS WITH λ-TRANSITIONS

Proof of claim: For sake of contradiction suppose that somewhere a λ

transition was used, let us focus on the first one. There are two cases. One
case is when the first λ transition is actually the last transition in the run:

s w−→−→ p→ f where f ∈ F ′

Thus, in M+, p is a state with a λ transition to a state f in F , and this case
the algorithm added p to F ′. This means that

s w1−→−→ p where p ∈ F ′

is an accepting run on w in M+, with fewer transition than the one we started
with, contrary to our assumption.

The other case is when the part of the run after the first λ transition has at
least one transition:

s x−→−→ p→ q a−→ r
y−→−→ f where w = xay and f ∈ F ′

or

s x−→−→ p→ q→ r
y−→−→ f where w = xy and f ∈ F ′

In each of these cases the algorithm ensures that there is a transition p a−→−→ r,
or p −→−→ r, as appropriate. So eliminating the transition from p to q yields
a shorter accepting run, contradicting our assumption.

This completes the proof that NFA M′ performs as advertised. ///

After seeing this algorithm and its correctness proof, we now have our result.

9.6 Theorem. For every NFAλ M there exists an NFA M′ such that

1. L(M′) = L(M)

2. M′ has no λ transitions

Furthermore, there exists an algorithm to compute M’ from M.

Proof. This is a corollary of Theorem 9.5. ///

102

9 NFAS WITH λ-TRANSITIONS

A variation on the construction?

In Algorithm 2 we focused on adding p a−→ r to δ+ whenever we saw the pattern
p −→ q a−→ r. A natural question is: how about patterns p a−→ q −→ r? Should
we add p a−→ r to δ+ when we see that? The answer is: it wouldn’t be wrong,
in the sense that if we added those in our algorithm we would still build a correct
NFA. That’s clear: the justification for adding these transitions is the same as the
one for adding them in the original case. But we don’t need to deal with these
patterns. The proof of correctness of our Algorithm 2 tells us that.

Here’s another question: suppose we had done the algorithm based on these
p a−→ q −→ r patterns instead of the p a−→ q −→ r patterns we did use? In
other words, suppose in Algorithm 2 we replaced the line

if δ+ has a transition p→ q and a transition q a−→ r then add p a−→ r
to δ+

by

if δ+ has a transition p a−→ q and a transition q −→ r then add p a−→ r
to δ+

Would the algorithm still be correct?

The answer is no. Exercise 90 asks you to find a counterexample.

9.2 NFAλ for Closure Properties

NFAλ are very convenient for building new automata from old ones, especially in
light of the fact that the λ-transitions can be eliminated (if desired).

We will see how, given DFAs M and N, we can use λ-transition tricks to build
NFAλs P accepting

• the union of the languages M and N accept;

• the concatenation of the languages M and N accept;

• the Kleene star of the language M accepts

For each construction we first show a picture with the intuition for the construction,
then give a precise algorithm, then state the precise correctness claim about the
algorithm. The algorithms are sufficiently clear that we omit the correctness proofs,
here, though.

103

9 NFAS WITH λ-TRANSITIONS

9.3 Pictures

Union To build an NFAλ recognizing the union of the languages of M and N,
all we have to do is make a new start state, and let the machine “guess” which
automaton to silently jump to.

snewstart

sM f 1
M f 2

M

M

sN f 1
N f 2

N

N

Concatenation To build an NFAλ recognizing the concatenation of the languages
of M and N, we just let the accepting states of the first machine optionally silently
jump to the start state of the second machine.

sMstart f 1
M f 2

M

M

sN f 1
N f 2

N

N

Kleene star To build an NFAλ recognizing the Kleene-star of the language of M,
we add a new start state, make it accepting in order to accept λ, let it jump silently
to the old start state, and let each previously accepting state jump silently back to
this new start state.

snewstart sM f 1
M f 2

M

M

104

9 NFAS WITH λ-TRANSITIONS

9.4 Algorithms and Correctness

Algorithm 3: NFAλ-Union
Input: two NFAλs M and N
Output: an NFAλ P such that L(P) = L(M)∪L(N)

Let M = (Σ,QM,δM,sM,FM)
Let N = (Σ,QN ,δN ,sN ,FN)
By renaming states if necessary, we may assume that QM ∩QN = /0;

• Let snew be a new state, not in QM or QN .

• The state space of P is QM ∪QN ∪{snew}.

• The start state of P is {snew}.

• The set of accept states of P is FM ∪FN .

• The transition function δP of P consists of the following transitions

– Every transition of δM and of δN is a transition of M;

– λ transitions s→ sM and s→ sN .

return P = (Σ, QM ∪QN ∪{snew}, δP, {snew}, FM ∪FN)

The following theorem reflects the correctness of our Algorithms.

9.7 Theorem. If M and N are NFAλs then

1. the NFAλ P returned by Algorithm 3 satisfies L(P) = L(M)∪L(N);

2. the NFAλ P returned by Algorithm 4 satisfies L(P) = L(M)L(N);

3. the NFAλ P returned by Algorithm 5 satisfies L(P) = L(M)∗.

Proof. These are all very easy to see; we omit a formal proof here. ///

Two notes.

• See Exercise 94 for a subtlety concerning these constructions.

• Your first reaction to the construction in Algorithm 5 might well be: it
doesn’t have to be that complicated. Exercise 93 asks you to talk yourself
out of that reaction.

105

9 NFAS WITH λ-TRANSITIONS

Algorithm 4: NFAλ-Concatenation
Input: two NFAλs M and N
Output: an NFAλ P such that L(P) = L(M)L(N)

Let M = (Σ,QM,δM,sM,FM)
Let N = (Σ,QN ,δN ,sN ,FN)
By renaming states if necessary, we may assume that QM ∩QN = /0;

• The state space of P will be QM ∪QN

• The start state of P is sM, the start state of M

• The set of accept states of P is FN , the accept states of N

• The transition function δP of P consists of the following transitions

– Every transition of δM and of δN is a transition of P;

– For every state f in FM, a λ transition f → sM

Caution: the old start state of N is no longer starting, as a state of P, and the
old accept states of M are no longer accepting, as states of P.

return P = (Σ, QM ∪QN , δP, sM, FN)

9.5 Exercises

Exercise 88. Make up some NFAλ, then construct equivalent NFA for them.

Exercise 89. Let N be the NFAλ pictured below. Build a DFA M such that
L(M) = L(N).

sstart p q

r

a

a a

a

b
λ

b

106

9 NFAS WITH λ-TRANSITIONS

Algorithm 5: NFAλ-Kleene-closure
Input: an NFAλ M
Output: an NFAλ P such that L(P) = (L(M))∗

Let M = (Σ,QM,δM,sM,FM)

• Let snew be a new state, not in QM.

• The state space of P is Q∪{snew}.

• The start state of P is snew

• There is only one accept state of P, namely snew

• The transition function δ of P consists of the following transitions

– Every transition of M is a transition of P

– For every state f in F , a λ transition f → snew

– A λ transition snew→ sM

Caution: the old start and accepting states of M are no longer starting or
accepting, as states of P.

Exercise 90. Suppose suppose in Algorithm 2 we replaced the line

if δ+ has transition p→ q and transition q a−→ r, add p a−→ r to δ+

by

if δ+ has transition p a−→ q and transition q −→ r, add p a−→ r to δ+

Prove, by showing a counterexample, that this revised algorithm does not correctly
eliminate λ-transitions.

Exercise 91. Practice eliminating λ transitions

Write down some simple NFAs. Combine some pairs of them using the technique
in Algorithm 3, resulting in an NFAλ. Now eliminate the λ transitions using
Algorithm 2.

Do the same for concatenation and for Kleene-star.

107

9 NFAS WITH λ-TRANSITIONS

Exercise 92. Let’s compare the running time of two algorithms for the following
problem.

NFA Union

INPUT: two NFAs M and N

QUESTION: a DFA P such that L(P) = LM)∪L(N)

Note that we start with NFAs but we want a DFA as our answer.

1. Algorithm 1 is: convert M and N separately to DFAs using the subset
construction; then do the product construction on the results.

2. Algorithm 2 is: use Algorithm 3 on M and N, followed by conversion of the
resulting NFAλ to a DFA.

Give the worst-case asymptotic running time of each algorithm, as a function of the
number of states on M and N. Is one of them preferable in the sense of asymptotic
running time?

In your calculations,

• charge O(2q) for a call to the subset construction on an automata with q
states

• charge O(q1q2) for a call to the product construction on automata with q1
and q2 states

• charge O(q1+q2) for a call to Algorithm 3 on automata with q1 and q2 states

Exercise 93. The following seems like a simpler way to do the construction that
builds an NFA for A∗ out of an NFA for A. Rather than add a new start state snew,
just (i) make the old start states accepting (so as to accept λ, since this is always in
A∗), and (ii) add λ transitions from each accepting state of M to the start states (in
order to allow the automaton to iterate).

Show by example that this idea fails.

Exercise 94. The construction in Algorithm 3 is very simple. But there is one
subtlety: note that we wrote, “ By renaming states if necessary, we may assume
that QM ∩QN = /0.” Why is that fussiness necessary? Give an example that shows
that Algorithm 3 can construct an automaton that does not accept L(M)∪L(N) if
we neglect to ensure QM ∩QN = /0.

The point being made in this exercise applies to Algorithm 4 as well.

108

10 FROM REGULAR EXPRESSIONS TO AUTOMATA

10 From Regular Expressions to Automata

As we noted earlier, we have two uses of the word “regular” in talking about
languages: we speak of “regular expressions” and the languages they denote, and
we defined “regular languages” as the languages accepted by DFAs. It would be
dumb if these two phrases didn’t match up, right? By now we have done all the
work we need to justify half of what we want to claim: in this section we collect
this work and prove the following theorem.

10.1 Theorem. If a language L is denoted by a regular expression then there is a
DFA accepting L.

Furthermore, there is an algorithm which constructs from a given regular
expression E and DFA M such that L(M) = L(E)

Proof. Algorithm 6 constructs, given E, an NFAλ, let’s call it M1 such that
L(M1) = L(E). The correctness of Algorithm 6 follows from the correctness of
the sub-algorithms it calls, which we have proven.

Now, we can use Algorithm 2 to convert M1 to an equivalent ordinary NFA M2.
Finally we can use the subset construction on M2 to arrive at our DFA M.

///

109

10 FROM REGULAR EXPRESSIONS TO AUTOMATA

Algorithm 6: RegExp to NFAλ

Input: a regular expression E
Output: an NFAλ M such that L(M) = L(E)
The construction is recursive, and proceeds by cases on the form of E.
case E is /0: do

return
sstart

case E is λ: do

return
sstart

case E is a: do

return
sstart f

a

case E is E1∪E2: do
Let M1 := RegExp-to-NFAλ (E1) ;
Let M2 := RegExp-to-NFAλ (E2) ;
return the result of NFAλ-Union (Algorithm 3) on M1, M2

case E is E1E2: do
Let M1 := RegExp-to-NFAλ (E1);
Let M2 := RegExp-to-NFAλ (E2);
return the result of NFAλ-Concatenation (Algorithm 4) on M1, M2

case E is E∗1 : do
Let M1 := RegExp-to-NFAλ (E1);
return the result of NFAλ-Kleene-Closure (Algorithm 5) on M1

Perspective on Regular Closure Properties

We have proven the following facts. If A and B are regular, then so are

A∩B A∪B A AB A∗

The variety of proof techniques used are worth noting. The first result was shown
by using the product construction, which works naturally on either NFAs or DFAs.
Closure under complementation required working with DFAs. Closure under
union, concatenation and Kleene star required working with NFAλs, so we needed
to know that NFAλs were no more expressive than NFAs (Theorem 9.6).

Now, it is not so clear that the converse of Theorem 10.1 holds. The languages
accepted by automata are closed under intersection and complement; notice that in

110

10 FROM REGULAR EXPRESSIONS TO AUTOMATA

going from regular expressions to automata we only use the closure under union,
concatenation, and Klene star. Maybe the operations of complement or intersection
takes us out of the realm of regular expressions?

It is not at all clear, for example, that if A is a language named by a regular
expression, then the complement A is also named by a regular expression. A similar
remark holds for the intersection of two languages named by regular expressions.
In Section 11 we tackle these questions.

10.1 Exercises

Exercise 95. [Koz97] Let K be the language denoted by

(01∪011∪0111)∗

Construct an NFA N with 4 states recognizing K. Convert N to a DFA M.

Exercise 96. (from Kozen) Conversion between machines and regular expressions
Give deterministic finite automata accepting the languages denoted by the
following regular expressions. (First build NFAλ, then convert to NFA, then to
DFA.)

1. (00∪11)∗(01∪10)(00∪11)∗

2. (000)∗1∪ (00)∗1

3. (0(01)∗(1∪00)∪1(10)∗(0∪11))∗

111

11 FROM AUTOMATA TO REGULAR EXPRESSIONS

11 From Automata to Regular Expressions

In this section we complete the story of the equivalence among DFA, NFAs, regular
grammars, and regular expressions, by showing the one remaining simulation
result. Our goal is to prove the following theorem.

11.1 Theorem. Given any NFA M we can construct a regular expression E such
that L(E) = L(M).

We prove the theorem by describing an algorithm to derive E from M. Here’s the
idea.

1. For each state q we introduce a set variable Q to stand for the language
which is the set of strings w that take q to an accepting state.

2. We view the transition rules of the NFA as equations which define each Q.
A subtlety is that such equations won’t necessarily have unique solutions,
just like ordinary equations over numbers typically don’t. But they will have
(unique) minimal solutions, and these are precisely what we intend when
we write our equations.

3. We use ordinary algebraic techniques to solve these equations, ultimately
arriving at a regular expression for S. We use Arden’s Lemma, in the next
section, to handle the case where an equation is “recursive.”

11.1 Using Equations to Capture NFAs

11.2 Example. Here is a first easy example, which shows off the substitution
techniques but doesn’t require Arden’s Lemma.

sstart p q ra a,b

b

b

We get the following equations.

112

11 FROM AUTOMATA TO REGULAR EXPRESSIONS

S = aP+bR

P = (a+b)Q

Q = λ

R = bQ | λ

Also note that we did a little simplification, writing P = aQ+bQ as P = (a+b)Q.
This kind of trick can save writing.

We want to solve for S. We work back to it, using substitution. Substituting for Q:

S = aP+bR

P = (a+b)λ

R = bλ | λ

But since λ is the identity for concatenation, we get to

S = aP+bR

P = (a+b)

R = b | λ

Substituting for R:

S = aP+b(b+λ)

P = (a+b)

One more substitution and we get

S = a(a+b)+bb+b

Now, you can see that the last answer is correct just by looking at the machine.
In fact you could probably have seen this answer from the beginning, without
all this machinery. But the virtue of the method we are developing is that it is
completely algebraic, works on automata of any size, and does not require any
creative insights.

The technique we just used can only take us so far, though.

11.3 Example. Consider the following NFA

113

11 FROM AUTOMATA TO REGULAR EXPRESSIONS

sstart p

a
b

A regular expression for the language this NFA accepts is obviously b∗a. But we
can’t find that answer using the simple substitution technique above. We start with
the equations

S = bS+aP

P = λ

which simplify to

S = bS+a

But we can’t mechanically eliminate S since it occurs on both sides of the equation.

We need a new idea.

11.2 Arden’s Lemma

Arden’s Lemma is from [Ard61].

If you prefer, you can skip the proof of Arden’s Lemma on first reading, just learn
what it says and skip to seeing how it is used below.

11.4 Lemma (Arden’s Lemma). Let A and B be any languages. Then the equation
X = AX +B has X = A∗B as a minimal solution. Furthermore, if the empty string
λ is not in A, this is the only solution.

Proof.

A∗B is a solution: This means verifying that A∗B = A(A∗B) + B. To see
this, just note that the left-hand side consists of all strings consisting of zero
or more concatenations from A concatenated with something from B; the
right-hand side can be viewed as the set of strings which are either (i) one
or more concatenations from A concatenated with something from B or (ii)
zero concatenations from A concatenated with something from B. These are
clearly the same.

114

11 FROM AUTOMATA TO REGULAR EXPRESSIONS

A∗B is minimal: To show minimality means to show that that A∗B is a subset
of every solution.

So let C be any language satisfying C = AC + B. We want to show that
A∗B⊆C. What we will use from our assumption is the fact that AC+B⊆C,
which entail that (i) B⊆C, and (ii) AC ⊆C.

Now it suffices to show that for every k we have AkB ⊆C. We’ll do this by
induction on k. When k= 0 this means B⊆C, which is (i) above. When k> 0
we want to show that AAk−1B ⊆ C. By induction hypothesis Ak−1B ⊆ C.
Concatenating each side by A we get AAk−1B ⊆ AC. But AC ⊆C by (ii), so
indeed we get AAk−1B⊆C.

A∗B is unique if λ 6∈ A:

For it suffices to show—in light of the minimality we just proved—that if C
is any solution, then C ⊆ A∗B. We prove, by induction on string length, that
if z is a string in C then z∈ A∗B. So choose z∈C. Since C = AC+B we have
either (i) z ∈ B or (ii) z ∈ AC. In case (i) if z ∈ B then certainly z ∈ A∗B. In
case (ii) if z ∈ AC then z can be written as xz1 where x ∈ A and z1 ∈C. Here
is where we use the assumption that λ 6∈ A: the string z1 is shorter than z. So
by induction hypothes, z1 ∈ A∗B. Thus xz1 ∈ A(A∗B), so xz1 ∈ (A∗B).

///

That condition about λ 6∈ A seems obscure, yes. But notice that for an equation
X = AX +B if we did have λ ∈ A then taking X to be the set of all strings yields a
solution in addition to X = A∗B. That is, Σ∗ = AΣ∗+B. And there will be lots of
other dumb solutions, too . . .

11.3 Using Arden’s Lemma: First Steps

Next are some examples that do use Arden’s Lemma but, since they have only one
state, don’t require the substitution technique.

11.5 Example. Return to the NFA from the previous example, where we arrived
at the equation

S = bS+a

Arden’s Lemma immediately yields S = b∗a, which matches the answer we get by
just looking at the NFA. Good. (The little assumption about λ was satisfied easily,
since the language denoted by expression b is just {b}, which does not contain λ)

115

11 FROM AUTOMATA TO REGULAR EXPRESSIONS

11.6 Example. As another baby example, consider this NFA, which accepts no
strings at all:

sstart

a

Here the equation we would write down is S = aS. (Note that s is not accepting!)
That is, the (implicit) B in the framework of Arden’s Lemma is /0. So Arden’s
Lemma would yield the regular expression a∗ /0. And indeed a∗ /0 = /0.

11.7 Example. What happens if we insist on applying Arden’s Lemma to an
equation that is not really recursive, i.e., one that looks like X = B? Well if we
write this as X = /0X +B, Arden’s Lemma tells us that the answer is /0∗B. But /0∗ is
just λ, so we get B after all. That’s reassuring.

11.4 The General Technique: Arden’s Lemma and Substitution

11.8 Example. Here’s a more interesting M; we’ll have to use substitution as well
as Arden. Note that L(M) is the language of strings with an odd number of as.

sstart p

a
b b

a

This time we get the equations

S = aP+bS

P = aS+bP+λ

We want to solve for S. At our very first step, eliminating the variable P, we see
that P occurs on the right-hand side of its own definition. This is where Arden’s
Lemma comes in handy.

116

11 FROM AUTOMATA TO REGULAR EXPRESSIONS

We can rearrange the equation for P as

P = bP+(aS+λ) (1)

Now we can apply Arden’s Lemma for the variable P with the “Q” being the
language denoted by (aS+λ). Arden’s Lemma says that

P = b∗(aS+λ) (2)

Simplifying just a little bit, we get

P = b∗aS+b∗ (3)

Now substitute this last expression for P back into that for S and combine terms:

S = a(b∗aS+b∗)+bS (4)

= (ab∗a)S+ab∗+bS (5)

= (ab∗a+b)S+ab∗ (6)

One more application of Arden’s Lemma and we’re done:

S = (ab∗a+b)∗ab∗ (7)

Convince yourself that this regular expression really does define the set of strings
with an odd number of as.

About λ-transitions Suppose the original NFA has λ-transitions? There’s
nothing special to do in this case.

11.9 Example. Suppose we have an NFA with λ-transitions with the corresponding
equation below (draw the NFA for yourself):

S = P+aQ

P = λ

Q = R

R = bS+aR

So R = a∗bS. Thus Q = a∗bS. Substituting, we get S = λ+ aQ = λ+ a(a∗bS).
Rearranging, we get S = (aa∗b)S∪+λ, which yields S = (aa∗b)∗

117

11 FROM AUTOMATA TO REGULAR EXPRESSIONS

Several Accepting States There is nothing special needed to deal with FAs with
more than one accepting state.

11.10 Example.

sstart q

p

b
a

a

b

The equations are:

S = aP+bQ

P = bP+λ

Q = aS+λ

Note that the only effect of having more than one accepting state is that we have
more than one equation that mentions λ.

Applying Arden’s Lemma to the equation for P we derive P = b∗λ = b∗.
Substituting for P and for Q in the equation for S we get

S = ab∗+b(aS+λ) = baS+(ab∗+b)

A final application of Arden’s Lemma yields our answer:

S = (ba)∗(ab∗∪b)

11.11 Example. This example is adapted from Robin Milner’s beautiful little book
on concurrency: Communicating and Mobile Systems: the π-calculus.

118

11 FROM AUTOMATA TO REGULAR EXPRESSIONS

sstart p

qr

a

b,c

a b

c

a,b

c

a,b,c

The equations are:

S = aP+(b+ c)R (8)

P = aR+bQ+ cS+λ (9)

Q = (a+b)R+ cS (10)

R = (a+b+ c)R (11)

Now, we can always proceed in a robotic manner but let’s be sensitive to some
simplifications. Note that R is the empty language! (You can see this by thinking
about it for a moment, or by computing using Arden’s Lemma: R = (a+b+ c)∗ /0,
which is /0.

Having noted that R = /0 we can simplify the equations above.

S = aP (12)

P = bQ+ cS+λ (13)

Q = cS (14)

Now we can proceed as in the previous example. First substitute the 2nd equation
into the first:

S = a(bQ+ cS+λ) (15)

= abQ+acS+a (16)

Now substitute the 3nd equation into the first:

S = ab(cS)+acS+a (17)

= (abc+ac)S+a (18)

119

11 FROM AUTOMATA TO REGULAR EXPRESSIONS

Now Arden gives us our answer:

S = (abc+ac)∗a (19)

Of course there can be more than one regular expression capturing a given
language. This is reflected in the fact that we have strategic choices we can make
as we solve the equations.

11.12 Example. For this example we’ll just start with the equations.

S = aQ+aR+λ

P = bS

Q = aP+bQ

R = bS+bP+λ

First we eliminate P. It is not defined recursively so there is no need for Arden’s
lemma at this step. We get

S = aQ+aR+λ

Q = abS+bQ

R = bS+bbS+λ

Then eliminate R

S = aQ+a(bS+bbS+λ)+λ

Q = abS+bQ

Now we want to eliminate Q. We use Arden first

Q = b∗abS

Then
S = ab∗abS+a(bS+bbS+λ)+λ

Collect terms, then use Arden

S = (ab∗ab+ab+abb)S+a+λ

= (ab∗ab+ab+abb)∗(a+λ)

So the language accepted by our NFA is defined by the regular expression

(ab∗ab+ab+abb)∗(a+λ)

120

11 FROM AUTOMATA TO REGULAR EXPRESSIONS

11.13 Example. Another example; this time we just give an answer, leaving it to
you to work through the steps.

q0start q1 q2
a,b

ba
a,b

One answer is: ((a∪b)(a∪b(a∪b)))∗(a∪b)b

Now, it may very well be that you arrive at an answer that looks different from this
one. But remember that very different-looking regular expressions can denote the
same language. So what you need to check is whether your answer is equivalent to
the one above; it doesn’t have to be identical.

11.5 Perspective

At this point we have shown that regular expressions and finite automata have
exactly the same expressive power in the sense that they determine the same set of
languages.

11.5.1 Equations about Machines

The equivalence between RegExps and FAs means that we can mentally tack back
and forth between two intuitively quite different intuitions. An FA is naturally
viewed as a dynamic thing—it’s a machine, after all—while a RegExp is an
algebraic notation. If M is an FA and E is a RegExp denoting L(M), we can view E
as an algebraic specification of M’s behavior. And the equalities between RegExps
mean that we have a way of capturing “equalities” between machines.

This is one more example of the phenomenon recurring throughout these notes:
having more than one way of thinking about a concept provides important insights.

11.5.2 Extended Regular Expressions

When regular expressions are used in applications, they are almost always given in
a richer form, with other operators such as negation, intersection, character classes,
back-references to subexpressions, etc. Sometimes these added features are macros
added for convenience, in the sense that they could be unfolded into the “official”
regular expression notation above. But sometimes these added notations really do
have expressive power beyond that of what we defined above.

121

11 FROM AUTOMATA TO REGULAR EXPRESSIONS

After our work above we are in a position to see that adding intersection and
complement to regular expressions are each syntactic sugar, that is it does not
change the expressive power of regular expressions.

11.14 Corollary. Let E and F be regular expressions. Then

• There is a regular expression E ′ such that L(E ′) = L(E)

• There is a regular expression D such that L(D) = L(E)∩L(F)

Proof. Here is an algorithm to build the regular expression E ′ for the first claim.

- From E build a DFA M such that L(M) = L(E) (using the algorithms
to go from regular expressions to NFAλs, then to an NFA, then to a
DFA).

- From M build a DFA M′ such that L(M′) = L(M) (using the easy
trick of swapping accepting and non-accepting states).

- From M′ build the regular expression E ′ (using the technique of this
section) such that L(E ′) = L(M′). This is the regular expression we
seek.

The argument for intersection is exactly the same idea: move into “finite automata
space” where intersection is easy (using the product construction) then move back
into “regular expression space.” The argument is a little easier, since the product
construction works just fine even on NFAs. ///

The takeaway then, is that we could have added complement and intersection to
our operations defining regular languages, without changing the expressive power.
But it is usually good when formally defining a language to use a small core of
operators and provide richer ones to your human users as syntactic sugar.

122

11 FROM AUTOMATA TO REGULAR EXPRESSIONS

11.6 Exercises

Exercise 97. For each of the automata in Exercises 80 and 81, construct equivalent
regular expressions.

Exercise 98. Go back to Exercise 38. Do you see how, after the work in this
section, each of the problems there now submit to a mechanical process for deriving
the answer? Some of those problems were not easy to do just by intuition. Do some
of them now, mechanically.

123

12 PROVING LANGUAGES NOT REGULAR

12 Proving Languages Not Regular

In this section we give a foolproof technique for showing that a language K is not
regular. By “foolproof” we mean that we will derive a test such that language K is
regular if and only if it is passes the test. This doesn’t mean that the test is always
simple to apply, but it is what is known as a characterization of being regular.

If you have studied the Pumping Lemma before as a means of showing languages
to be non-regular, you may know that there are languages which are not regular but
which cannot be shown to be non-regular by the Pumping Lemma. That is to say,
the Pumping Lemma does not give a characterization of regularity.

12.1 The K-Distinguishability Relation

Fix an alphabet Σ. Suppose K is any language over Σ (regular or not). In an
obvious sense, K partitions the world Σ∗ into two parts: the strings that are in K
and the strings that are not. What we will do in this section is something more
subtle and useful. We will show how any given language induces a partition of Σ∗

into a number of classes, sometimes infinitely many, and this partition gives a lot
of information about K.

As an example, consider the language K = {anbm | n,m≥ 0}. Let x be the string
aab and let y be the string a. Both x and y are in K. But if we now imagine
concatenating certain strings z to each string, obtaining xz and yz, we see that x and
y act differently. For example if we were to take z to be the string a, then xz = aaba
is not in K, while the string yz = aa is in K. So the string a “distinguishes” the two
original strings aab and a with respect to K.

On the other hand if we were to take x to be aab as before and take y to be ab then
there is no string z that will distinguish x and y: no matter what z is chosen, either
xz and yz will both be in K or neither one of them will. (Check that for yourself
before reading further.)

12.1 Definition. Let K be any language over alphabet Σ. Two strings x and y in
Σ∗ are indistinguishable with respect to K, or K-indistinguishable, written x≡K y,
if for every string z, xz ∈ K if and only if yz ∈ K.

So x and y fail to be K-distinguishable if there is some string z∈Σ∗ such that exactly
one of xz and yz is in K. In this case we say that x and y are K-distinguishable, and
we write x 6≡K y.

124

12 PROVING LANGUAGES NOT REGULAR

Note that the relation ≡K is defined without any reference to machines of
grammars. It is a purely “combinatorial” idea!

It is easy to show that ≡K is an equivalence relation on Σ∗, that is, it is reflexive,
symmetric, and transitive. Since ≡K is an equivalence relation, it partitions Σ∗ into
classes. Let us write [x]K for the equivalence class of a string x. That is,

[x]K = {y | x≡K y}

12.2 Check Your Reading. Before you go any further, do Exercise 99.

12.1.1 Counting Classes for a Language

We will see later that the number of ≡K equivalence classes of a language K is a
very important measure of how “complicated” K is.

12.3 Definition. Let K be any language. The index of K is the number of ≡K

equivalence classes of K. If there are not finitely many classes we just say “the
index of K is infinite.”

12.2 Examples

This is a complicated idea so let’s do lots of examples.

12.4 Example. Let A = {w ∈ {0,1}∗ | w has length divisible by 3}. There are
three ≡A classes:

1. the set of strings whose length is equal to 0 mod 3

2. the set of strings whose length is equal to 1 mod 3

3. the set of strings whose length is equal to 2 mod 3

Note that strings in the first class happen to be in A, while no strings in the latter
two classes lie in A.

The index of A is 3.

12.5 Example. Let B = {anbm | n,m≥ 0}. There are three ≡B classes:

1. A class containing λ,a,aa, . . . , ie all the strings of the form a∗

125

12 PROVING LANGUAGES NOT REGULAR

2. A class containing b,ab,aab,aabb, . . . , ie all the strings of the form a∗bb∗

3. A class containing all other strings, ie all the strings of the form
(a∪b)∗ba(a∪b)∗

Note that strings in the first two classes happen to be in B, while no strings in B
live in the last class.

The index of B is 3.

12.6 Example. Let C = {anbn | n≥ 0}. There are infinitely many ≡C classes, that
is, C has infinite index.

Proof. Consider the infinite collection of strings {an | n≥ 0}. Each of these strings
is distinguishable from the other with respect to C. Since: for i 6= j the strings ai

and a j are distinguishable by the string z = bi. (Note by the way that the string
z = b j would also distinguish them). ///

12.7 Example. Let D = {w ∈ {a,b}∗ | w has an equal number of as and bs }.
Then D has infinitely many ≡D classes, that is, D has infinite index.

Proof. Consider the infinite collection of strings {an | n≥ 0}. (Yes, this is the same
collection we considered for the language C . . .)

Each of these strings is distinguishable with respect to D. Indeed the same
argument as we used for C applies: for i 6= j the strings ai and a j are distinguishable
by the string z = bi. ///

12.8 Example. Let E = {x ∈ {a,b}∗ | x 6= λ and x begins and ends with the same symbol}.
There are 5 ≡E classes, that is, the index of E is 5.

Proof. Here are the five ≡E classes:

1. the set consisting only of the empty string

2. the set of strings starting with a and ending with a

3. the set of strings starting with a and ending with b

4. the set of strings starting with b and ending with a

5. the set of strings starting with b and ending with b

126

12 PROVING LANGUAGES NOT REGULAR

To see that this is correct, first observe that these 5 classes partition Σ∗, meaning
that they are mutually disjoint, and their union equals Σ∗. So it suffices to show
that (i) two strings in different classes are distinguishable, while (ii) within each
class the strings are indistinguishable.

These details are left as an exercise. ///

12.9 Example. Let Pal = {x ∈ {a,b}∗ | x = xR} There are infinitely many ≡Pal
classes, that is, Pal has infinite index.

Proof. Consider the infinite collection of strings {anb ; | n ≥ 0}. Each of these
strings is distinguishable from the other with respect to E. Since: for i 6= j the
strings aib and a jb are distinguishable by the string z = ai. ///

12.10 Example. Let Q = {an2 | n≥ 0}, over the alphabet {a}. There are infinitely
many ≡Q classes.

Proof. In this case it happens that each class is a singleton, that is, for each pair of
strings x = an2

and y = am2
there is a z which distinguishes them.

Let us suppose that n < m. Take z to be the string a2n+1. We now argue that xz ∈Q
while yz 6∈ Q.

Certainly xz ∈ Q since xz = an2
a2n+1 = an2+2n+1 = a(n+1)2

. To argue that
yz = am2

a2n+1 = am2+2n+1 is not in Q it suffices to argue that m2+2n+1 cannot be
a perfect square no matter what n and m are.Certainly it is greater than m2. But it
is also smaller than (m+1)2, since (m+1)2 = m2 +2m+1, and 2n+1 < 2m+1.

So we have found our infinite collection of pairwise Q-distinguishable strings. ///

12.3 Regular Languages Have Finitely Many Classes

Recall that if M is a DFA, for every string x there is a single run of M on x: when s
is the start state we have s x−→−→ p for exactly one state p.

Note that this notation would not make any sense if M were an NFA not a DFA,
since δ̂ would not behave like a function.

The following lemma is easy to prove but it turns out to be crucially important in
determining which languages are regular.

12.11 Lemma (Distinguishability Lemma). Let K be a regular language, and let
M be a DFA recognizing K. If δ̂M(s,x) = δ̂M(s,y) then x≡K y.

127

12 PROVING LANGUAGES NOT REGULAR

Proof. Suppose δ̂M(s,x) = δ̂M(s,y). Let z be any string; we want to show that
xz ∈ K if and only if yz ∈ K. It’s enough to show that M takes xz and yz to the same
state of M. But δ̂M(s,x) = δ̂M(s,y) simply means that M takes x and y to the same
state of M. So certainly M takes xz and yz to the same state of M. This says that
x≡K y. ///

Note that the this lemma is equivalent to saying that whenever M is a DFA
recognizing language K then if x 6≡K y then M takes x and y to different states.
So we have

12.12 Corollary. If M is a DFA recognizing K then the number of≡K equivalence
classes is less than or equal to the number of states of M.

Proof. This follows easily from Lemma 12.11. ///

Now we easily have

12.13 Corollary. Let K be a language, and suppose there is an infinite collection
x1,x2, . . . of strings such that any two of them are K-distinguishable. Then K is not
regular.

Proof. If there were a DFA M recognizing K then runs of M would have to take
each xi to a different state. This is impossible since M can have only finitely many
states. ///

So now we know that each of the languages K for which we found infinitely many
≡K-classes is non-regular, by Corollary 12.13.

It’s also true, by the way, that each of the languages there for which there were
only finitely many ≡-classes is regular. This is not a coincidence, as we will see in
Section 14. But for now, Exercise 102 should be very helpful for your intuition.

12.4 Using Distinguishability to Prove Languages Not Regular

Let’s see how to use Corollary 12.13 for proving languages to be not regular.

These proofs all follow a common script.

1. Based on K, we define a set X of infinitely many strings.

128

12 PROVING LANGUAGES NOT REGULAR

2. Then we give an argument that shows that for any two strings chosen from
X , they are K-distinguishable.

12.14 Example. Let us prove that the following language is not regular.

K def
= {anbn | n≥ 0}

We follow the script.

Define X def
= {an | n≥ 0}. X is clearly infinite.

Claim. if x and y are different strings from X , then x 6≡X y.

Proof of claim: let x = ai and y = a j, where i 6= j. Let z be bi. Then xz ∈ K but
yz 6∈ K, thus x 6≡K y. This completes the proof.

When a language has infinitely many distinguishability classes, it might be very
difficult to describe them in a general way, by a formula. So don’t make your
life more difficult than it has to be: if you want to prove some language to be
non-regular, you need only give an argument that infinitely many classes exist,
you don’t have describe all the classes. In order to be rigorous and convincing
that infinitely many classes exist you will probably have to give some formula for
identifying infinitely many classes. But that’s different from giving a formula to
describe all classes. That could be hard. But that’s ok, because you don’t have to
do it!

I have written the following examples proofs in a very robotic way, to
emphasize the fact that the strategy is the same for all of them: to prove
diferent languages non-regular you only need to vary your choice of
distinguishable strings.

12.15 Example. Let A = {w ∈ {a,b}∗ | w has the same number of as as bs}

Proof that A is not regular:

1. It suffices to show that A has infinitely many ≡A classes.

2. To show this, here are infinitely many strings that are each distinguishable
from the others. λ,a,aa, . . . ,ai, . . .

3. To show that there are distinguishable, consider any ai and a j.

We have ai 6≡A a j because we can use the word z = bi to distinguish them.

129

12 PROVING LANGUAGES NOT REGULAR

12.16 Example. Let B = {w ∈ {a,b}∗ | w is an even-length palindrome}

Proof that B is not regular:

1. It suffices to show that B has infinitely many ≡B classes.

2. To show this, here are infinitely many strings that are each distinguishable
from the others. λ,ab,aab, . . . ,aib, . . .

3. To show that there are distinguishable, consider any aib and a jb.

We have aib 6≡B a jb because we can use the word z= bai to distinguish them.

12.17 Example. Let C = {w ∈ {(,)}∗ |w is properly-paired string of parentheses}

For example:

These are balanced: x1 = (()), x2 = ()(), x3 = (()()), x4 = (((()())))()()

These are not balanced: y1 = ((), y2 =)(, y3 = ())(

Proof that C is not regular:

1. It suffices to show that C has infinitely many ≡C classes.

2. To show this, here are infinitely many strings that are each distinguishable
from the others. λ,(,((, . . .(i. . .

3. To show that there are distinguishable, consider any (i and (j.

We have (i 6≡C (j because we can use the word z =)i to distinguish them.

Comment. Don’t be unsettled by the fact that C also contains strings like “()()”
and “((()()))” even though the proof above ignored these and only focussed on “(((
. . .)))” We don’t need to say something about all ≡-classes in a non-regularity
proof, we just have to find infinitely many.

12.18 Example. LetQ = {an | n is a perfect square}

Proof that Q is not regular:

1. It suffices to show that Q has infinitely many ≡C classes.

2. To show this, we claim that Q itself is a set of strings which are each
distinguishable from the other. That is, for each pair of words x = an2

and
y = am2

we will show that there is a z which distinguishes them.

130

12 PROVING LANGUAGES NOT REGULAR

3. To show that there are distinguishable, suppose that x = an2
and y = am2

,
with n < m. Take z to be the word a2n+1. We now argue that xz ∈ Q while
yz 6∈ Q.

Certainly xz∈Q since xz= an2
a2n+1 = an2+2n+1 = a(n+1)2

. To argue that yz is
not in Q, we calculate: yz == am2

a2n+1 = am2+2n+1, and m2 +2n+1 cannot
be a perfect square no matter what n and m are. Why? Certainly it is greater
than m2. But it is also smaller than (m+1)2, since (m+1)2 = m2 +2m+1,
and 2n+1 < 2m+1.

If you think hard about what is going on here you will see that the essence of
the proof is that the gap between any two successive squares increases. The “gap”
between n2 and (n+1)2 is (2n+1), and if we add that to n2 we get a perfect square
but if we add that to any larger m2 we do not get a perfect square.

12.19 Example. Let P = {an | n is prime}

To do this example we need to do a little preliminary math. First look back at
Example 12.18. That example hinged on the fact that the gap between any two
successive squares increases. We use the same idea here, but not exactly, since it
is not true that the gap between successive primes increases uniformly, as we had
with squares.6

But what we can show pretty easily is that there are arbitrarily large gaps between
primes. Specifically, let’s show that for any n there is a sequence of at least n− 1
consecutive composite numbers. And for that we just need to consider (having
fixed an n) the numbers

n!, (n!+2), (n!+3), . . . (n!+n)

each of these is composite, since each (n!+ k) is divisible by k.

Now, having done that, for a given prime p let’s write g(p) for the difference
between p and the next prime beyond p. Then we can define an infinite sequence
of primes p1, p2, p3, . . . such that the gaps g(pi) are strictly increasing. In other
words, if i < j then g(pi)< g(p j). This is what we need for our proof.

Proof that P is not regular:

1. It suffices to show that P has infinitely many ≡C classes.

6In fact, a famous conjecture, the “twin primes conjecture” asserts that there are infinitely many
pairs of primes that differ by 2. This is unproven but number-theorists generally believe it to be true.

131

12 PROVING LANGUAGES NOT REGULAR

2. To show this, let ap1 ,ap2 ,ap3 , . . . be the sequence of words corresponding to
the sequence of primes described above.

We claim that these api are pairwise distinguishable.

3. To show that there are distinguishable, suppose that x = api and y = ap j , with
i < j. Take z to be the word ag(pi). Then the number of as in xz is exactly the
next prime beyond pi, namely pi + g(pi). So xz ∈ P. But the number of as
in yz is p j +g(pi), and this is not a prime because g(pi)< g(p j). So yz 6∈ P.
So this z distinguishes x and y.

132

12 PROVING LANGUAGES NOT REGULAR

12.5 Exercises

Exercise 99. Fix Σ = {a,b}.

1. Let A be the language

{w | w contains an occurrence of abb }

(a) The words ab and ba are ≡A-distinguishable, that is ab 6≡B ba.
Find a specific word z that witnesses that fact.

(b) The words λ and abb are ≡A-distinguishable. Find a specific word z
that witnesses that fact.

(c) The words λ and ba are≡A-distinguishable. Find a specific word z that
witnesses that fact.

(d) Explain why the words abb and babba are ≡A-equivalent, that is,
abb≡A babba.

2. Let B be the language
{w | |w| is even }

(a) The words aab and ab are ≡B-distinguishable. Find a specific word z
that witnesses that fact. That is, find a z such that aabz ∈ B yet abz 6∈ B,
or vice versa.

(b) The words λ and a are ≡B-distinguishable. Find a specific word z that
witnesses that fact.

3. Let C be the language
{aib j | i < j}

(a) The words ab and ba are ≡C-distinguishable. Find a specific word z
that witnesses that fact.

(b) The words λ and abb are ≡C-distinguishable. Find a specific word z
that witnesses that fact.

(c) Explain why the words bba and ba are ≡C-equivalent.

Exercise 100. True or False: for any language K, K is itself one of the equivalence
classes of the relation ≡K .

If you answer True, give a proof, if you answer False, give a specific
counterexample.

133

12 PROVING LANGUAGES NOT REGULAR

Exercise 101. Over the alphabet Σ = {0,1} let Ln be the set of strings whose nth-
to-last symbol is 1. Precisely: Ln is {u0v | u,v ∈ {0,1}∗,v has length (n−1)}

1. For each n let Ln be the set of strings whose nth-to-last symbol is a 1. Explain
how to build an NFA for Ln with n+ 1 states. (We’ve already done this, as
one of the first examples to see why NFAs are useful)

2. Show that any two different bitstrings x and y of length n are Ln-
distinguishable

3. Conclude that the smallest DFA recognizing Ln has at least 2n states.

Motivation: by putting these pieces together we see that the NFA-to-DFA
transformation necessarily involves an exponential blowup in the number of states,
for some NFAs.

Exercise 102. For each of the examples in Section 12.1 for which the number of
≡-classes was finite, construct a DFA. Look for a pattern between the ≡-classes
and the states of your DFA. Make a conjecture.

Exercise 103. Let Σ be the alphabet {0,1}

1. Let A be the language {w | length of w is divisible by 4 }. Prove that any
DFA recognizing A must have at least four states, by writing down four
strings that are pairwise ≡A-distinguishable.

Note for this and subsequent parts: To prove your 4 strings {w1,w2,w3,w4}
mutually indistinguishable you must consider each of the pairs wi, w j with
i 6= j and for each of these pairs, construct a string z such that exactly of the
strings wiz and w jz is in A. Since you have 4 strings for this part, you will
have

(4
2

)
= 6 pairs to address.

2. Let B be the language {0i1 j | i, j ≥ 0}. Prove that any DFA recognizing B
must have at least three states, by writing down three strings that are pairwise
≡B-distinguishable, and proving them to be ≡B-distinguishable, as outlined
in the previous part.

3. Let C be the language {w ∈ {0,1}∗ | w has at most three 1s }. Prove that
any DFA recognizing C must have at least five states, by writing down five
strings that are pairwise ≡C-distinguishable, and proving them to be ≡C-
distinguishable.

(Rather than giving
(5

2

)
= 10 individual arguments for indistinguishability

you might prefer to give a generic argument!

134

12 PROVING LANGUAGES NOT REGULAR

Exercise 104. Show the following languages to be non-regular.

These exercise are roughly in order of difficulty. A few of them might repeat
examples from the previous text; but it is useful to have these collected together.

General Hint. When asked to show a language to be non-regular, if you choose
to use Corollary 12.13, you should proceed as follows. You want to describe an
infinite set of strings that are mutually distinguishable. Your job is to (i) describe
the infinite collection of strings formally, then (ii) give an argument that for any
two strings x and y in your family, there is a string z that distinguishes them.

1. {anb2n | n≥ 0}

2. {anbmcn | n,m≥ 0}

3. {anbm | n≤ m}

4. {anbm | n≥ m}

5. {aibncn | i≥ 0,m≥ 0}.

6. {w | ∃x w = xxR}, over the alphabet {a,b}.

7. {w | ∃x w = xx}, over the alphabet {a,b}.

8. the set of strings of as and bs whose length is a perfect square .

9. {an | n is a perfect cube}

10. {an | n is a power of 2}

Exercise 105. Bounded exponents.

For each of the following languages, either prove that it is regular or prove that it
is not regular.

1. A = {aib j | i≥ j and j ≤ 100}

2. B = {aib j | i≥ j and j ≥ 100}

Exercise 106. Regular subset

1. Prove or disprove: If L is regular and K ⊆ L then K is regular.

2. Prove or disprove: If L is regular and L⊆ K then K is regular.

135

12 PROVING LANGUAGES NOT REGULAR

Exercise 107. Infinite subset of non-regular Prove that no infinite subset of
{anbn | n≥ 0} is regular.

Exercise 108. Applying closure properties Let R be a regular language and let N
be a language which is not regular.

1. Suppose X is a language such that X = R∩N. Does it follow that X is
necessarily regular? If so, say why. Does it follow that X is necessarily
non-regular? If so, say why. If your answers to the two previous questions
was no, name a regular R and non-regular N satisfying X = R∩N with X
non-regular, and name a regular R and non-regular N satisfying X = R∩N
with X regular.

2. Suppose X is a language such that N = R∩ X . Does it follow that X is
necessarily regular? If so, say why. Does it follow that X is necessarily
non-regular? If so, say why. If your answers to the two previous questions
was no, name a regular R and non-regular N satisfying N = R∩X with X
non-regular, and name a regular R and non-regular N satisfying N = R∩X
with X regular.

3. Suppose X is a language such that R = N ∩ X . Does it follow that X is
necessarily regular? If so, say why. Does it follow that X is necessarily
non-regular? If so, say why. If your answers to the two previous questions
was no, name a regular R and non-regular N satisfying R = N ∩X with X
non-regular, and name a regular R and non-regular N satisfying R = N ∩X
with X regular.

4. Suppose X is a language such that R=X . Does it follow that X is necessarily
regular? If so, say why. Does it follow that X is necessarily non-regular? If
so, say why. If your answers to the two previous questions was no, name
a regular R satisfying R = X with X non-regular, and name a regular R
satisfying R = X with X regular.

5. Suppose X is a language such that N =X . Does it follow that X is necessarily
regular? If so, say why. Does it follow that X is necessarily non-regular? If
so, say why. If your answers to the two previous questions was no, name a
non-regular N satisfying N = X with X non-regular, and name a non-regular
N satisfying N = X with X regular.

Exercise 109. Closure tricks Assume that the following language is not regular.
A = {an | n is a perfect square}

136

12 PROVING LANGUAGES NOT REGULAR

Prove that the set D of strings of as and bs whose length is a perfect square is not
regular, without doing any new reasoning about ≡-classes.

Hint. The regular languages are closed under intersection. Write A as the
intersection of D with something you know to be regular.

Exercise 110. Closure tricks again For this problem, assume that the language
Eq = {anbn | n≥ 0} is not regular.

Prove that the following languages over {a,b} are not regular, without doing any
new reasoning about ≡-classes.

Hint. Use closure properties.

1. Neq = {akbl | k 6= l}. (Caution: this set is not the same set as Eq)

2. For this problem let us introduce the temporary notation wo to stand for the
result of taking a string w and replacing as by bs and vice versa.

Let G = {wwo | w ∈ {a,b}∗}. Show G is not regular.

3. K = {w | w has an unequal number of as and bs} (Caution: this set is also
not the same set as Eq)

Exercise 111. It is important that M be a DFA, not just an NFA, in Lemma 12.11.
For one thing, the notation “δ̂M(s,X)” doesn’t make sense for an NFA, since there
can be more than one run, or no runs, on a given string.

Still, one could imagine NFA-versions of Lemma 12.11 that at least make sense,
such as the following.

1. Let K be a regular language, and let M be an NFA recognizing K. If there is
a run of M on x and a run of M on y that end in the same state, then x≡K y.

2. Let K be a regular language, and let M be an NFA recognizing K. If for every
run on x ending a state p there is a run on y that ends in p, then x≡K y.

For each of the above statements, decide if it is true; if so give a proof, if not, give
a counterexample.

Exercise 112. Lemma 12.11 is not an “if-and-only-if”. That is, it does not assert
that if x≡K y then δ̂M(s,x) = δ̂M(s,y). Indeed, that statement is false in general.

Give a concrete example of a DFA M recognizing a language K and two strings x
and y such that x≡K y but δ̂M(s,x) 6= δ̂M(s,y).

Hint. You can use a simple K. Use a dumb DFA (that’s a hint! A smart DFA won’t
work.)

137

13 DFA MINIMIZATION

13 DFA Minimization

Suppose A is a regular language. Can there be more than one DFA M with
L(M) = A?

Let’s first note that we need to be precise when we say “more than one DFA”.
Surely if we systematically rename the states of a DFA that shouldn’t count as a
different DFA, right? So whenever we speak DFAs being “the same” or not, we
mean “up to renaming of states”.

Next let’s note that there is an easy uninteresting answer, to the above question: if
M is a DFA and we add one or more inaccesible states to M we’ll get a different
DFA but we will not have changed the language accepted.

So the real question we want to ask is, Suppose A is a regular language, can there
be more than one DFA with no inaccesible states recognizing A, up to renaming of
states? The answer is yes; see several examples in this section.

That’s not surprising, but the following good news is surprising. We can,
algorithmically, optimize our DFAs, to eliminate unreachable states and to combine
states that “do the same thing”. Indeed we will see that for any DFA M there is a
unique best optimized version of M. It will take some work to make that precise
and show the optimization algorithm, but it will be worth it.

13.1 Example. Often the NFA-to-DFA construction will yield a DFA that is not
minimal. Here is the obvious NFA over the alphabet {a,b,c} that accepts those
strings with aa as a substring.

sstart p f

a,b,c

a a

a,b,c

If we use the subset construction to build a DFA recognizing this same language
we get this:

{s}start {s, p} {s, p,q} {s,q}

b,c
a a

b,c

a

b,c

b,c

a

138

13 DFA MINIMIZATION

But we could collapse the two accepting states into one and still have a DFA for
the same language.

Having noted that, let’s ask more ambitious questions. For any regular language A,
consider all the DFAs that accept A. Certainly there is a smallest number of states
that occur among all these DFAs. Let’s call these minimal DFAs for the language
A.

Here are the question we want to ask in this section.

1. Can we construct a minimal DFA for A if we start with an arbitrary DFA for
A?

2. Are all the minimal DFAs for a language A essentially the same?

The answer to the first question is yes: we will show how we can construct a DFA
M′ which is equivalent to M and which has the smallest possible number of states
among all DFA equivalent to M. The answer to the second question is also yes:
given an arbitrary DFA M there is a unique DFA M′ of minimal size equivalent to
M.

13.1 Unreachable States

First note that if our given DFA M has some unreachable states, we can eliminate
them immediately in our search for a minimal equivalent of M. And in fact
the techniques below—or rather our analysis of its correctness—will rely on the
assumption that the input DFA has no unreachable states. So henceforth we make
that assumption: all DFAs we work with in this section have no inaccessible
states.

It is algorithmically straightforward to eliminate unreachable states from a DFA: a
depth-first search on the directed graph associated with the DFA will discover all
the reachable states.

13.2 State Equivalence

In this section we define an equivalence relation ≈, on states of a given DFA.

139

13 DFA MINIMIZATION

Caution! In Section 12 we looked at the equivalence relation K-distinguishability
on strings. We will eventually that this relation and the relation ≈ that we are
about to define are entangled in a deep and interesting way. But be careful not to
mix these up, they are certainly not the same thing. Indeed they don’t even relate
the same kind of objects: K-distinguishability compares strings, while≈ compares
machine states.

13.2 Definition. Let M = (Q,Σ,δ,q0,F) be a DFA; let p and q be states of M. We
say that states p and q are M-equivalent, written if p≈M q, if

for every x ∈ Σ
∗ : if p x−→−→ p′ and q x−→−→ q′ then p′ ∈ F if and only if q′ ∈ F

When p and q are not M-equivalent we write p 6≈M q. Unfolding the definition, we
have that p 6≈M q if

∃x ∈ Σ
∗ : with p x−→−→ p′ and q x−→−→ q′ but exactly one of p′ ∈ F or q′ ∈ F

13.3 Example. Starting with

q0start q1

q2q3

a

b

a

b

a

b

a

b

you can check that q0 ≈ q2 and that q1 ≈ q3.

13.4 Example. Let’s start with this DFA.

140

13 DFA MINIMIZATION

q0start q1 q2

q3 q4 q5

0

1

0
1

0
1

0

1

0

1

0

1

Here it turns out that q0 ≈ q2 and q0 ≈ q4 and q3 ≈ q5.

13.5 Example. In this DFA

sstart p qa

b

a,b a,b

no pair of distinct states is M-equivalent. For example, the reason that p and q are
not M-equivalent is that the empty string distinguishes them. The reason that s and
q are not equivalent is that a sends s to an accepting state, while a sends q to a
non-accepting state.

The previous example makes it clear that we can never have two states be M-
equivalent if one of them is accepting and the other is not. But we have to be
careful:

13.6 Example. In this DFA

sstart pq

a

b
a,ba

b

no pair of states are M-equivalent. For example, even though both p and q are
accepting, the string b distinguishes them.

13.7 Example. Often when a DFA is constructed from an NFA by the subset
construction, we construct different but equivalent states. For example, in the

141

13 DFA MINIMIZATION

DFA constructed in Example 13.1 , the states labelled {s, p,q} and {s,q} are M-
equivalent. The states labelled {s} and {s, p} are M-inequivalent: the string a
distinguishes them.

Note that it is not clear at first glance how to test algorithmically whether p ≈ q,
since the definition seems to involve consideration of all strings in Σ∗. Put that
question aside for a moment, and ask: why do we care about ≈?

The answer is that if p ≈ q then we can “collapse” p and q to get a smaller DFA,
and this smaller one will accept precisely the same language as M. In fact we will
do all such collapses simultaneously. We will do this in Section 13.

But first, some observations about ≈.

13.8 Lemma.

1. The relation ≈ is an equivalence relation;

2. The relation ≈ respects transitions: if p ≈ q then for every a ∈ Σ, when
p a−→ p′ and q a−→ q′, then q≈ q′.

These observations will be important as we argue for the correctness of the
construction in Section 13.4

13.3 Computing the ≈ relation

We did the examples so far “by inspection” but what if the DFAs had thousands
of states? Is there an algorithm that, given M, computes the relation ≈? It’s not
obvious at first glance how to do so. To see why you should be suspicious, look
carefully at the definition of p≈ q: to conclude that p and q are related in this way,
according to the definition (cf Definition 13.2) we have to check that “for all z∈ Σ∗,
z doesn’t distinguish p and q. That’s infinitely many z to “test”. We certainly can’t
do a naive exhaustive search through all candidate zs.

If we think about computing the complement of the ≈ relation (which is just
as good as computing ≈ of course) we get a clue about how to proceed: to
conclude that p 6≈ q, we have to check whether there exists some z ∈ Σ∗ such that
z distinguishes p and q. And if you think about it a little you should expect that
if such a z exists, there will be one whose length is no longer than the number of
states.

142

13 DFA MINIMIZATION

13.9 Check Your Reading. Before going further convince yourself that if p 6≈ q,
then there exists some z ∈ Σ∗ such that z distinguishing p and q whose length is no
longer than the number of states.

You don’t need a formal proof of this fact, it will emerge from our analysis of
Algorithm 7. But understanding this fact intuitively will lead you to understand the
algorithm.

Once you believe that bound on possible witnesses to p 6≈ q, then it is clear that in
principle we could test p 6≈ q, by an exhaustive search. But in fact we can do better
than naively searching for such a z; here is an efficient algorithm that does the job.

The following algorithm computes the ≈ relation for a given DFA M. During the
course of the algorithm we actually compute the complement, D, of ≈, and at the
end return ≈ itself.

Algorithm 7: DFA State Equivalence
Input: a DFA M = (Q,Σ,δ,q0,F)
Output: the relation ≈ (as a set of pairs of states)
Let Q = {q0,q1, . . . ,qn}.
We maintain a list D of pairs of states {i, j}, with i 6= j.
initialize: D := {{i, j} | (qi ∈ F and q j /∈ F) or (qi /∈ F and q j ∈ F)}.
The invariant is :
after k iterations of the repeat loop, D will contain pair {i, j} iff there is a
string x of length no greater than k distinguishing qi and q j.

repeat
Consider each {i, j} 6∈ D in turn ;
For each such {i, j}, consider each alphabet symbol a ∈ Σ ;
suppose qi

a−→ qm and q j
a−→ qn ;

If {m,n} ∈ D, add {i, j} to D.
until no change in D;
return the set of all those pairs {qi,q j} of states such that {i, j} is not in the
set D.

13.10 Lemma. Algorithm 7 correctly computes the ≈ relation for any DFA.

Proof. The algorithm is guranteed to halt, since there are fewer than (|Q|2/2)
distinct {i, j} pairs considered at each stage, and each time through the loop we
add at least one pair to the list D. And it is clear that the invariant we stated above
holds for the set D.

143

13 DFA MINIMIZATION

It remains to prove that D contains precisely the pairs {i, j} such that qi 6≈ q j.

First, suppose {i, j} ∈ D. Then certainly qi 6≈ q j; this is clear from our invariant.

Next suppose that qi 6≈ q j; we want to show that {i, j} ∈ D.

We prove that {i, j} ∈D by induction on the length of a shortest such x. Indeed we
prove that {i, j} ∈ D by stage s for s = |x|. That is to say, what we do here is to
prove that our invariant is actually an “if and only if.”

Let x be a string that distinguishes qi and q j. If x = λ then {i, j} will be put into
D at stage 0, initialization. If x = ay has length s+1 then let qm satisfy qi

a−→ qm

and q j
a−→ qn.

Observe that qm 6≈ qn and that the string y (of length s) distinguishes these states.
By induction, then, {m,n} is in D by stage s. Thus we put {i, j} into D by stage
s+1. ///

13.11 Example. Let’s look again at the DFA from Example 13.4.

q0start q1 q2

q3 q4 q5

0

1

0
1

0
1

0

1

0

1

0

1

We can work through Algorithm 7 by hand, if we make a little table for the
D relation. Strictly speaking we are computing all the pairs {i, j} of non-M-
equivalent states but clearly we don’t need to explicitly mark both (i, j) and (j, i)
in our table, so we just pay attention to the upper-right triangle.

Here is the end result of filling in the table. The “ “ spaces are table slots that
were not marked during the course of the algorithm.

[q0] 1 λ λ

[q1] 1 λ 1 λ

[q2] λ λ

[q3] λ

[q4] λ

[q5]

144

13 DFA MINIMIZATION

Once we have the table, slots (i, j) that have entires are the ones where qi 6≈ q j. So
the empty (i, j) give us the ≈ relation. That is, if slot (i, j) is unmarked then we
can collapse qi and q j.

So we verify what we did intuitively before, that q0 ≈ q2 and q0 ≈ q4 and q3 ≈ q5.

The most important application of DFA state equivalence is in minimizing DFAs.
We will explore this in depth in Section 13. But the following application is also
useful, and will come in handy soon.

13.4 The Collapsing Quotient of a DFA

We have seen in Section 13.2 how to compute the ≈relation for a DFA. Now we’ll
use it to build a minimization of that DFA.

13.12 Definition (The Quotient Construction). Let M = (Q,Σ,δ,q0,F) be a DFA.
For each q ∈Q let [q] denote the equivalence class of q with respect to the relation
≈. We define the DFA M≈ as follows.

• the states of M≈ are the equivalence classes of states of M;

• the start state of M≈ is [q0];

• a state [q] of M≈ is accepting in M≈ precisely if q is accepting in M;

• the transition function δ≈ of M≈ is given by [p] a−→ [p′] just in case p a−→ p′

in M.

13.4.1 The problem of “well-definedness”

There is a technical matter to dispose of first. It is important to understand that
the construction in Definition 13.12 makes sense only in light of the properties of
≈ in Lemma 13.8. Specifically, we need ≈ to be an equivalence relation in order
to define the states of M≈, and we need the second property in Lemma 13.8 in
order for the definition of δ≈ to be sensible. To understand this second remark,
suppose—to the contrary—that we could have two states p ≈ q but there were an
a ∈ Σ with p a−→ p′ in M, and q a−→ q′ in M, but p′ 6≈ q′ in M.

145

13 DFA MINIMIZATION

Then, in the collapse-DFA we are defining, [p] and [q] would be the same state
(since p ≈ q), but where would we transition to from this state on input a? One
the one hand, the definition says we should go to [p′], because p a−→ p′, but the
definition also says we should go to [q′], because q a−→ q′, If [p′] and [q′] are
not the same state in the collapse automaton, things wouldn’t make sense. But
Lemma 13.8, part 2, is precisely what assures us that this doesn’t happen.

This kind of issue comes up all the time whenever one is working with equivalence
classes, that is, whenever one wants to make some sort of definition concerning
classes, where there can be more than one “name” for a given class. One needs to
be sure that the definition does not say something different if one chooses different
names for the same class. People speak of making sure that a notion is well-defined.

13.13 Example. Starting with

q0start q1

q2q3

a

b

a

b

a

b

a

b

we observed in the last section that q0 ≈ q2 and that q1 ≈ q3. So when we collapse
we get

[q0]start [q1]

a

a

b b

Important. In the picture we labelled the left state as “[q0]” but we could just as
easily have written “[q2]”; the same goes for “[q1]” versus ”[q3]”. Make sure you
understand this: [q0] and [q2] are different names for exactly the same thing!

146

13 DFA MINIMIZATION

13.14 Example. If we start with the DFA in Example 13.4, compute ≈as we did
there, and then do the collapsing construction, here is the DFA we get.

q024start q1

q35

0

1

0

1

0, 1

13.15 Example. Let’s look once again at the DFA from Example 13.4.

q0start q1 q2

q3 q4 q5

0

1

0
1

0
1

0

1

0

1

0

1

We can work through Algorithm 7 by hand, if we make a little table for the
D relation. Strictly speaking we are computing all the pairs {i, j} of non-M-
equivalent states but clearly we don’t need to explicitly mark both (i, j) and (j, i)
in our table, so we just pay attention to the upper-right triangle.

Here is the end result of filling in the table. The “ “ spaces are table slots that
were not marked during the course of the algorithm.

[q0] 1 λ λ

[q1] 1 λ 1 λ

[q2] λ λ

[q3] λ

[q4] λ

[q5]

Once we have the table, slots (i, j) that have entires are the ones where qi 6≈ q j. So

147

13 DFA MINIMIZATION

the empty (i, j) give us the ≈ relation. That is, if slot (i, j) is unmarked then we
can collapse qi and q j.

In this example we see that q0 ≈ q2 and q0 ≈ q4 and q3 ≈ q5.

Here is the DFA we get.

q024start q1

q35

0

1

0

1

0, 1

13.16 Check Your Reading. For each of the other examples in Section 13.2, build
the collapsing quotient DFA.

13.5 M≈ Does the Right Thing

The next Lemma says that when we collapse we don’t change the ultimate behavior
of a DFA.

13.17 Lemma. L(M≈) = L(M)

Proof. Proving this is equivalent to proving, when s is the start state, that if s x−→−→ p
in M, then [s] x−→−→ [p] in M≈.

Now, this looks just like the definition of the transition relation in M≈ except that
it speaks about strings x instead of single letters a. So it is natural to use induction
over x.

When x = λ, things are easy, since s λ−→−→ sin M and indeed [s] λ−→−→ [s]in M≈.

When x = ya, for y ∈ Σ∗,a ∈ Σ, the computation in M looks like s
y−→−→ p′ a−→ p

for some p′. By induction hypothesis, [s]
y−→−→ [p′] in M≈. By the definition

of transition in M≈ we have [p′] a−→ [p]. Putting these together we conclude
[s] x−→−→ [p] in M≈. ///

13.18 Check Your Reading. Why did we choose to write x in the induction step
as ya instead of ay?

148

13 DFA MINIMIZATION

13.19 Check Your Reading. Explain why it is not true that s x−→−→ p in M, if and
only if [s] x−→−→ [p] in M≈ Having seen that, go back and make sure you believe that
proving just the one direction, as we did in the proof above, is sufficient for proving
L(M≈) = L(M).

13.6 M≈ is special

Some natural questions come up now. Let M be any DFA, with no inaccesible
states. Let K be L(M). And suppose that we compute M≈.

What happens if we collapse M≈ itself?

Is M≈ a smallest possible DFA for K?

Suppose we had started with a different DFA N recognizing K. How
are the respective collapses M≈ and N≈ related?

Amazingly, the answer to these questions are the nicest ones we could imagine.
For all the DFAs that accept K, their collapses all have the same number of
states, namely the number of ≡K equivalence classes. And this is the minimum
number of states that a DFA for K could have. Both of those remarks follow from
Corollary 13.21.

The DFA M≈ has the following nice property, which can be stated as: indistin-
guishable strings end up in equivalent states. Note that this is a converse to the
Distinguishability Lemma 12.11, but it only holds for collapsed DFAs!

13.20 Lemma. Let M≈ be the output of Algorithm 7 for some DFA M. For any
strings x and y, if x≡K y then δ̂M≈(s,x) = δ̂M≈(s,y)

Proof. We want to show that if x≡K y and s x−→−→ p and s
y−→−→ q then p≈ q.

Let z ∈ Σ∗; we have to show that if p z−→−→ r and if q z−→−→ r′ then r ∈ F iff r′ ∈ F .

But since s x−→−→ p z−→−→ r, xz ∈ K iff r ∈ F . And since s
y−→−→ q z−→−→ r′, yz ∈ K

iff r′ ∈ F . Since we are assuming x ≡K y, we have xz ∈ K iff yz ∈ K, so indeed
r ∈ F iff r′ ∈ F . ///

13.21 Corollary. Suppose M is a DFA with no inaccessible states. Let K be L(M).
Then the number of states of M≈ is equal to the number of≡K equivalence classes.

149

13 DFA MINIMIZATION

Proof. A way to think about δ̂M≈(s,−) is that it is a function from strings to states
of M≈. When there are no inaccessible states in M this function is surjective.

But Lemma 13.20 says that this really makes a map from the ≡K equivalence
classes to the states of M≈, since strings in the same class will go to the same
M≈-state.

So we have a surjective function from ≡K equivalence classes to the states of M≈,
so the number if states is no larger than the number of ≡K classes.

Since L(M≈) = K we can use Corollary 12.12 to conclude that the number states
is actually equal to the number of classes.

///

It follows that M≈ cannot be collapsed.

13.22 Corollary. The collapse of M≈ is M≈, that is (M≈)≈ = M≈

Proof. If (M≈)≈ were not equal to M≈, it would have fewer states than M≈, but
would contradict that every DFA for K must have at least as many states as there
are ≡K-classes. ///

13.6.1 All Minimal DFAs for K Are the Same

We can say something stronger. Namely, if you take any two DFAs for K and
collapse them, you will always get the same resulting DFA. Of course the states
might have different names, but that is a superficial difference that we won’t care
about. What we are claiming is that any two such DFAs can be made identical just
by renaming states. This is a stronger statement that saying that the two have the
same number of states: we are saying that there is a bijection between their states
that preserves the structure of the transitions.

Rather than defining abstractly what that last notion means we will just describe
the correspondence (if you know what an “isomomorphism” is in other contexts,
that is what we will establish).

We will use the idea from Section 13.7. Let M1 = (Σ,Q1,δ1,s1,F1) M2 =
(Σ,Q2,δ2,s2,F2) each be the result of having done a minimization construction,
starting from some DFAs recognizing K. As usual, to avoid silliness, we will
assume that Q1∩Q2 = /0. This will be true as long as the original DFAs we started
with had disjoint states.

Let≈ be the state-equivalence relation on Q1∪Q2 as defined in Section 13.7. Let’s
note a few things:

150

13 DFA MINIMIZATION

1. No two distinct states from the same Mi can be ≈ to each other. Since:
otherwise, that Mi could be collapsed further.

2. No state in M1 can be≈ to more than one state in M2 (and vice versa). Since:
otherwise, those two states in M2 would be≈ to each other, contradicting the
previous remark.

3. So every state in M1 is≈ to a unique state in M2, thus the following function
f defines a bijection from the states of M1 to the states of M2 :

f (q1) = the state q2 ∈ Q2 such that q1 ≈ q2 .

4. That’s our bijection; to see the sense in which is preserves the structure of
the DFAs, notice that

(a) The original start states are ≈: s1 ≈ s2. Since: M1 and M2 recongnize
the same language.

(b) If q1 ≈ q2 and q1
a−→ r1 in M1 and q2

a−→ r2 in M2, then r1 ≈ r2.
Since: if r1 and r2 could be distinguished by some word z then q1 and
q2 would be distinguished by az.

Putting all that together we see that M1 and M2 have exactly the same structure,
based only on the fact that they are collapsed DFAs for the same language.

13.7 Application: Testing Equivalence of DFAs

Here is another application of ≈: testing whether two DFAs accept the same
language. This subsection is adapted from Section 4.4 of [HMU06].

Suppose M1 and M2 are DFAs over the same alphabet Σ. How might we test
whether L(M1) = L(M2)? Given any single string x we can test whether M1 and
M2 agree on x by just running the machines on x. But we certainly can’t decide
L(M1) =

? L(M2) by exhaustively testing all strings, since there are infinitely many.

We will see in a later section an important algorithm to answer this question using
the product construction and an Emptiness Test for DFAs. But it is interesting to
see that our algoritm for computing ≈ also gives an algorithm, as follows.

Write M1 = (Σ,Q1,δ1,s1,F1) M2 = (Σ,Q2,δ2,s2,F2) and assume—without loss of
generality—that the states of M1 and M2 are disjoint from each other. Notice that,
conceptually, the definition of state equivalence in Definition 13.2 makes sense as
a binary relation between any two states q and q′ from Q1 ∪Q2, even though the
aren’t from the same DFA. To be careful and obey the rules though, we proceed as
follows.

151

13 DFA MINIMIZATION

Define a new DFA M1 = (Σ,(Q1∪Q2),(δ1∪δ2),s1,(F1∪F2)) by just bundling the
two original DFAs together, and declaring s1 to be the start state. It doesn’t matter
that we chose s1 rather than s2, and of course the M2-part of our new automata
is inaccessible, but still, this M is a legal DFA. And now the ≈-relation makes
perfect sense on this M. The punch line is this: the two machines will accept the
same language precisely if the two start states s1 and s2 satisfy s1 ≈ s2.

13.23 Lemma. Let M1 = (Σ,Q1,δ1,s1,F1) M2 = (Σ,Q2,δ2,s2,F2) be as just
described, and let ≈be the state-equivalence relation as just described. Then
s1 ≈ s2 if and only if L(M1) = L(M2).

13.8 Collapsing NFAs?

A natural question at this point is: what happens if we try to do the collapse
construction on nondeterministic automata? The first thing to observe is that it
is not obvious what the definition of state-equivalence might be in the presence of
nondeterminism: think about it.

The next observation is the killer, though: it is not true that minimal NFAs for a
given language are unique. That is, there can be two NFAS N1 and N2 such that
L(N1 = L(N2) and each of N1 and N2 have a minimal number of states for their
language, yet N1 and N2 are not isomorphic.

13.24 Example.

sstart pa

a

sstart pa

a

Once we notice this we can see that the collapsing construction for DFAs cannot
possibly carry over to NFAs without some changes.

It turns out that there is quite a nice generalization of the idea of collapsing that
works for NFAs, based on the idea of bisimulation. This is an important idea in the
theory of concurrent processes. But we cannot go into it here.

152

13 DFA MINIMIZATION

13.9 Exercises

Exercise 113. (From [Koz97])

Consider the DFAs below, written in the table-notation introduced in Example 6.6

List the equivalence classes for the equivalence relation ≈.

1.
a b

start 1 1 4
2 3 1

accepting 3 4 2
accepting 4 3 5

5 4 6
6 6 3
7 2 4
8 3 1

2.
a b

start, accepting 1 3 5
accepting 2 8 7

3 7 2
4 6 2
5 1 8
6 2 3
7 1 4
8 5 1

3.
a b

start, accepting 1 2 5
accepting 2 1 4

3 7 2
4 5 7
5 4 3
6 3 6
7 3 1

4.
a b

start, accepting 1 2 6
accepting 2 1 7

3 5 2
4 2 3
5 3 1
6 7 3
7 6 5

5.
a b

start 1 1 3
accepting 2 6 3

3 5 7
accepting 4 6 1

5 1 7
accepting 6 2 7

7 3 3

6.
a b

start, accepting 1 2 5
accepting 2 1 6

3 4 3
4 7 1
5 6 7
6 5 4
7 4 2

Exercise 114. Make an adjustment to Algorithm 7 so that at the end of the
algorithm, if states qi and q j are 6≈, we can compute (quickly) a particular string x
such that x distinguishes them.

153

13 DFA MINIMIZATION

Hint. Record more information in the table.

Exercise 115. (From [Koz97])

Consider the DFAs from Exercise 113, for which you computed the≈-relation. For
each machine, tell which states are accessible, then build the automaton obtained
by removing inaccessible states and collapsing equivalent states.

Exercise 116. For each language E, construct the minimal DFA M such that
L(M) = E.

1. E = (a∪b)∗ab.

2. E = ((a∪b)(a∪b))∗∪ (a∪b)∗b

3. E = (a+b)∗aba(a+b)∗

4. E = a∗b∗ ∪ b∗a∗

Don’t be clever and invent a minimal DFA from scratch - treat these as exercises
in finding minimal DFAs systematically. That is, make a naive NFA, refine it to
a DFA and use the minimization algorithm. Remember that you cannot do the
collapse construction on NFAs directly.

Exercise 117. This exercise is designed to help you understand the well-
definedness requirement, used crucially in Definition 13.12.

Define the following relation ≡5 on the set Z of integers:

m≡5 n if (m−n) is divisible by 5.

Show that ≡5 is an equivalence relation.

Having done that, let’s write [n] for the equivalence class that n belongs to. Let Z5
be the set of equivalence classes.

Note that, for example, [2] = [7] = [−13] = [257] = . . . All of these are the same
class, that is, the same element of Z5.

Now let us (try to) define a binary relation � on Z5 by the rule:

[m]� [n] if m≤ n in Z.

What goes wrong? Relate this to the construction of M≈.

Exercise 118. This exercise is designed to help you understand the well-
definedness requirement, used crucially in Definition 13.12.

154

13 DFA MINIMIZATION

Write down a DFA M = (Σ,Q,δ,S,F) (at random). Define the binary relation∼= on
states on M that holds between q1 and q2 if they are the same distance (the length of
a minimal path) from the start state. Prove that ∼= is an equivalence relation. So it
partitions Q. Explain why it does not satisfy property 2 of Lemma 13.8. (Actually,
it is possible that it does satisfy it, by accident, if so, start again with a different
DFA . . .)

Assuming it does not satisfy property 2: try to build a DFA by collapsing states
according to ∼=: What goes wrong? Relate this to the construction of M≈.

155

14 THE MYHILL-NERODE THEOREM

14 The Myhill-Nerode Theorem

Our work in Sections 13.2 and 13 has told us, so far, that if K is a regular language
then

1. the number of ≡K-equivalence classes for K is finite,

2. if M is any DFA recognizing K then we can collapse M to get a DFA M≈
recognizing K with the same number of states as there are ≡K-equivalence
classes, and

3. if M and N are any DFAs recognizing K then M≈ and N≈ are the same up to
renaming of states.

This is a very pretty picture. There is one question remaining, though. Suppose
the number of ≡K-equivalence classes is finite. Is K necessarily regular? In this
section we prove this (the converse of the main result in Section 12).

This will show, by the way, that the technique of finding an infinite distinguishable
collection will always work to show languages not regular. That is, if K is not
regular there will always be such an infinite distinguishable collection. (Whether
you can be clever enough to find it is another question, of course).

To prove our result we need to look at the distinguishability relation a little harder.
We start by recalling that≡K is an equivalence relation on Σ∗, that is, it is reflexive,
symmetric, and transitive. Since ≡K is an equivalence relation, it partitions Σ∗ into
classes. Recall that we write [x]K for the equivalence class of a string x. That is,

[x]K = {y | x≡K y}

Do yourself a favor and do Exercise 119 before reading further. After you do that
you should be able to make a conjecture about what’s coming next.

14.1 Finite index languages are regular

Since we will be focusing now mainly on languages K that have finitely many ≡K

classes, it will be convenient to introduce the notation “Index(K)” for the number of
classes If K happens not to have finitely many classes we just agree that Index(K)
stands for “infinity”.7

7It turns out that there are always countably many classes, but that will never matter to us.

156

14 THE MYHILL-NERODE THEOREM

What we will show is that if Index(K) is finite then K is regular. Even more, such
a K has an recognizing DFA with Index(K)-many states.

Now here is the beautiful idea. When Index(K) is finite then we will show
explicitly how to build a DFA recognizing K. The trick is to let the states of the
DFA be the equivalence classes of ≡K themselves!

There are two times before that we have built automata by taking a novel notion
of what a “state” is. In the product construction we build an FA whose states are
ordered pairs of states from two given FAs. In the subset construction we build
a DFA whose states are subset of a given NFA. Now we are going to build a
DFA whose states are certain (often infinite) sets of strings. This is a bit wilder
than the other two constructions, but the essential point is the same: states are a
mathematical abstraction and you can construct them out of anything you like.

14.1 Definition (The Minimal DFA DK). Suppose K ⊆ Σ∗ is a language with
finitely many ≡K-classes. Define DK = (Σ,Q,δ,s,F) as follows.

• Q = {[x]K | x ∈ Σ∗}

• The transition relation δ is given by:
for each state [x]K and each input character a, [x]K

a−→ [xa]K .

• s = [λ]K

• F = {[x]K | x ∈ K}

Our goal is to show that this definition makes a DFA, and that L(DK) = K.

14.1.1 The problem of “well-definedness” again

Once again we have that issue of well-definedness, as introduced in Section 13.4.1.
We wrote the equivalence classes of ≡K as

[x1]K , [x2]K , . . . , [xn]K

But the choice of these xi is not canonical, that is, there are usually many different
“names” for the same equivalence class. Indeed, whenever x ≡K y we have that
[x]K is the same set as [y]K .

157

14 THE MYHILL-NERODE THEOREM

14.2 Check Your Reading. Go back to Exercise 119 above where you generated
the equivalence classes for various languages. Start with language A there and
write the classes as

[x1]A, [x2]A, . . .

for several different choices of x1, x2, etc. Do the same for languages B,C,D, ...
until you really understand this idea or until you get tired.

Having noticed the fact that any given equivalence class can have many different
representatives (or “names”) it then becomes important to be sure that the definition
of δ, which ostensibly depends on the choice of names for the equivalence classes
does not really depend on the names. In other words, we must show that if [x]K and
[y]K are the same state, then our definition of the δ-function treats them the same.
This amounts to proving that in writing

[x]K
a−→ [xa]K .

if we replace the name x by some y which also names [x]K , that is, [x]K = [y]K , then
the result [ya]K is the same state as [xa]K .

This isn’t hard to prove, though. Here is the Lemma.

14.3 Lemma. If [x]K = [y]K then for every a ∈ Σ, [xa]K = [ya]K .

Proof. To say that [xa]K = [ya]K is to say that xa ≡K ya. So to prove that we
consider an arbitrary z ∈ Σ∗ and argue that xaz ∈ K iff yaz ∈ K. But this follows
from the assumption that x≡K y since az is a test string for x and y. ///

Having proved Lemma 14.3 we can be confident that Definition 14.1 really does
define a DFA.

14.1.2 Correctness of the Construction

Ok, now we know that we really defined a DFA. Let’s know show that the DFA
does the right job.

14.4 Theorem. Let K and DK be as in Definition 14.1. Then L(M) = K.

Proof. To avoid notational clutter let’s just write δ for δDK and δ̂ for δ̂DK .

158

14 THE MYHILL-NERODE THEOREM

We want to show that for all strings x,

δ̂DK (s,x) ∈ F if and only if x ∈ K

By the definition of F in DK it suffices to show that for all strings x,

δ̂(s,x) = [x]

We prove that fact by induction on x.

When x = λ: this is immediate from the fact that the start state of DK is [λ]

When x = ya for a ∈ Σ: we compute

δ̂(s,ya) = δ(δ̂(s,y),a) definition of δ̂

= δ([y],a) induction hypothesis

= [ya] definition of δ in DK

///

Summarizing our work, we’ve proved the following

14.5 Theorem. A language K is regular if and only if Index(K) is finite.

Proof. One direction is just the contrapositive of Corollary 12.13. The other
direction is the content of Definition 14.1 and Theorem 14.4. ///

14.6 Theorem. The DFA DK has a minimal number of states among all DFAs
recognizing K.

Proof. It suffices to show that no DFA recognizing K can have fewer than Index(K)
states. But this follows from Corollary 12.12 ///

14.2 Relating Myhill-Nerode and Minimization

If we were to minimize the DFA DK it would not change, since it already has the
minimum possible number of states. We showed in Section 13 that all minimized
DFAs for a language were the same, so this means that in fact all minimized DFAs
for K are precisely DK .

159

14 THE MYHILL-NERODE THEOREM

What’s nice about this observation is that, for any language K with finitely many
≡K-classes, we have a canonical notion of a minimal DFA for K, without having
to start out with some DFA in the first place. Keep in mind that the structure of
DK is determined purely combinatorial, as a quotient of Σ∗ defined in terms of
membership in K. So here we defined a machine “organically” out of Σ∗ using K.

So let us collect all of our work on collapsing DFAs, indistinguishability, etc, into
one place.

14.7 Theorem (Myhill-Nerode). A language K is regular if and only if Index(K)
is finite. When Index(K) is finite, the unique minimal DFA DK for K is obtained by
the construction in Definition 14.1: this DFA has Index(K)-many states. If we start
with any DFA M recognizing K, the collapsing quotient M≈ is a DFA isomorphic
to DK .

160

14 THE MYHILL-NERODE THEOREM

14.3 Exercises

Exercise 119. Each language K below is regular. So each has finitely many ≡K-
equivalence classes. List at least three strings in each class. Then construct a DFA
for K. Finally—this is the most important part—compare the equivalence classes
for the language with the states of your DFA.

1. Let A = {x ∈ {a}∗ | x has length divsible by 3 }.

2. Let B = {x ∈ {a,b}∗ | x has length divsible by 3 }.

3. Let D = {anbm | n,m≥ 0}.

4. Let G = {anbm | n,m≥ 0 and n+m is divisible by 3 }.

5. For fixed k let Hk = {w ∈ {a,b}∗ | the kth symbol from the end of w is a}.

6. Let J = {x | x has no consecutive repeated characters}

7. Let K = {x ∈ {a,b}∗ | x 6= λ and x begins and ends with the same symbol}.

Exercise 120. Using Corollary 12.12 we can compute a bound on how many states
are required for a DFA to accept certain regular languages. We use that here to
prove that in the worst case there can be an exponential blowup in the number of
states when converting NFAs to DFAs.

Let Σ = {a,b}. Let K be the language consisting of all strings w over Σ such that
the nth letter from the end of w is a b.

K = (a∪b)∗ b (a∪b) . . .(a∪b)

where there are (n−1) occurrences of (a∪b) after the b.

1. Show that there is an NFA recognizing Hk with n+1 states.

2. Describe the equivalence classes of the Myhill-Nerode relation ≡R. There
are 2n of them!

3. Conclude that the size of the smallest DFA for Hk is no less than 2n.

4. You just proved:

The conversion from NFAs to equivalent DFAs can induce an
exponential blowup in the size of the state space.

161

14 THE MYHILL-NERODE THEOREM

Exercise 121. For each of the languages L in Exercise 119, do the following:

1. Write a little box corresponding to each equivalence class, and put at least
three representatives from that class in your box;

2. Using those boxes as states, draw a picture of the DFA obtained by
Definition 14.1.

3. For each of the equivalence classes C, find a regular expression denoting C.

Exercise 122. Generalizing from Exercise 121. Let M be an DFA, with start state
s, and let q be any state of M. Explain how to construct a regular expression for the
set of all strings x such that δ∗(x) = q.

Hint. This problem could have gone in Section 11.

Exercise 123. Let K be a language such that ≡K has finite index. Consider one of
the equivalence classes of ≡K , call it C. Note that C is a set of strings, so it is a
language in its own right. Prove that C is regular.

Hint. Exercise 122 will help.

Exercise 124. Following up on Exercise 123. Let K be a language with finite
index and suppose you are given an arbitrary DFA recognizing K. Explain how
to algorithmically compute regular expressions for each of the ≡K equivalence
classes.

162

15 DECISION PROBLEMS ABOUT REGULAR LANGUAGES

15 Decision Problems about Regular Languages

Some decision problems concerning automata and regular expressions

Important. The input to the problems below is not a language. Indeed this
wouldn’t make any sense. The input to any decision problem must be a finite
object, something that can be presented to a computer. So the inputs below are, for
example, a DFA, or a regular expression, etc. Then the question that gets asked is
about the language that the DFA (or whatever) represents.

15.1 DFA Membership

DFA Membership

INPUT: DFA M, word w

QUESTION: w ∈ L(M)?

Algorithm 8: DFA Membership
just simulate the machine.

Complexity: O(|w|), since we take one step per character in the word w.

15.2 DFA Emptiness

DFA Emptiness

INPUT: DFA M

QUESTION: L(M) = /0?

Algorithm 9: DFA Emptiness

view the DFA M = (Σ,δ,s,F) as a directed graph ;
do a depth-first search starting with s ;
if any of the visited vertcies is in F then

return NO
else

return YES

Complexity: the complexity of depth-first search in a graph is O(n+e) where n is
the number of nodes and e is the number of edges. The number nodes in our graph
is |Q|. The number of edges is k×|Q|where k = |Σ|. Treating the size of Σ as being
fixed as the DFA varies, we have that the complexity is O(|Q|+ k|Q|) = O(|Q|).

163

15 DECISION PROBLEMS ABOUT REGULAR LANGUAGES

15.3 DFA Universality

DFA Universality

INPUT: DFA M

QUESTION: L(M) = Σ∗?

stress: Cannot do exhaustive search !!

Algorithm 10: DFA Universality

construct a DFA M′ with L(M′) = L(M);
call the algorithm DFA Emptiness on M′;
if this returns YES then

return YES
else

return NO

Complexity: The same as for the DFA Emptiness, since the construction of M′ can
be done in constant time. So the complexity is O(|Q|) where Q is the set of states
of M.

15.4 DFA Subset

DFA Subset

INPUT: DFAs M1,M2

QUESTION: L(M1)⊆ L(M2)?

The idea: Use that fact that for any sets X and Y , X ⊆ Y iff X ∩Y = /0. Use this
fact and the constructions for complement and intersection of DFA-languages to
reduce this problem to DFA emptiness.

Algorithm 11: DFA Subset

construct a DFA M′2 with L(M′2) = L(M2);
construct a DFA N with L(M′2)∩L(M1);
call the algorithm DFA Emptiness on N;
if this returns YES then

return YES
else

return NO

164

15 DECISION PROBLEMS ABOUT REGULAR LANGUAGES

Complexity: The construction of M′2 can be done in constant time, and M′2 has the
same number of states as M2. The construction of N takes time O(|Q1| × |Q2|);
the DFA emptiness test takes linear time. So the final complexity result is
O(|Q1|× |Q2|).

15.5 DFA Equality

DFA Equality

INPUT: DFAs M1,M2

QUESTION: L(M1) = L(M2)?

We saw one algorithm for this based on ≈. Here is another, that relies only on the
product and complement constructions.

The idea: X = Y iff X ⊆ Y and Y ⊆ X .

Algorithm 12: DFA Equality

call DFA Subset on (M1,M2) ;
call DFA Subset on (M2,M1) ;
if both of these return YES then

return YES
else

return NO

Complexity: We make two calls to DFA Subset, which are each O(|Q1|×|Q2|), so
the complexity of DFA Equality is O(|Q1|× |Q2|).

15.6 DFA Infinite Language

DFA Infinite Language

INPUT: DFA M

QUESTION: is L(M) infinite?

The idea: use depth-first search to search for a path to an accepting state with a

165

15 DECISION PROBLEMS ABOUT REGULAR LANGUAGES

loop back to that state.

Algorithm 13: DFA Infinite

view the DFA M = (Σ,Q,δ,s,F) as a directed graph ;
compute the set X of all states that are on a path from s to an accept state ;
call depth-first search starting with s ;
foreach of the visited vertices q ∈ X do

call depth-first search starting with q ;
if q is visited then // this means there is a loop starting and ending at q

return YES
return NO

Complexity: As described above, each depth-first search of the DFA takes O(|Q|)
time. The number of such searches is bounded by the number of states, so this
yields an O(|Q|2) bound.

15.7 NFA and Regular Expression inputs

Even though DFAs, NFAs, Regular Expressions, etc are all equivalent from the
perspective of language-recognition power, the complexity of algorithms can be
very different if the input is in one form rather than another.

15.8 Complexity of Regular Conversion Algorithms

• Convert NFA to DFA: requires (worst-case) exponential time, since the
number of states can blow up by an exponential.

• Convert a regular expression to an NFA with λ-transitions: linear time.

• Convert an NFAλ to an ordinary NFA: can take O(|Q|3) time.

• Convert a regular expression to an (ordinary) NFA: O(n3) time, by the
previous remarks.

• Convert an NFA or DFA to a regular expression: can take exponential time.

15.9 NFA Membership

NFA Membership

INPUT: NFA N, word w

QUESTION: w ∈ L(M)?

166

15 DECISION PROBLEMS ABOUT REGULAR LANGUAGES

An obvious algorithm is: (i) convert N to a DFA M, then (ii) run the DFA
membership algorithm on M and w. But this can take time exponential in the
number of states of N. We can do better; recall Exercise 82.

15.10 Regular Expression Membership

Notice that there is no obvious way to directly look at a regular expression and
decide whether a given word matches it. But, it is still true that there is an algorithm
to solve the problem:

Regular Expression Membership

INPUT: a regular expression α, a word w

QUESTION: is w ∈ L(α)?

Here is a straightforward algorithm.

Algorithm 14: Regular Expression Membership

given α, build an NFA M such that L(M) = L(α) ;
call the NFA Membership algorithm on M and w

The worst-case complexity of this is not so good, since it will involve eliminating
λ-transitions from NFAs, then simulating NFAs. The problem of finding an
algorithm that is fast—both in theory and in practice—is interesting and has a long
history. . . we won’t go into it here.

15.1 Check Your Reading. Be sure you are able to describe in careful pseudocode
algorithms for each of the preceding decision problems when the input is a DFA,
an NFA, or a regular expression.

167

15 DECISION PROBLEMS ABOUT REGULAR LANGUAGES

15.11 Exercises

Exercise 125. Give decision procedures for each of the following problems.

Each of your answers should be a script that does nothing besides

• call one or more algorithms we have developed in these notes for building
new automata from old ones, and

• call one or more algorithms we have developed in this section for deciding
properties of automata

Use the algorithms in this section as a guide to how formal to be.

To give you an idea of how things things go, the first one is done for you.

1. Given a DFA M: Does M accept any strings of even length?

Solution.

The idea: It is easy to make DFA ME that accepts precisely the strings of
even length. So to ask whether the given DFA M accepts any strings of
even length is to ask whether L(M) and L(ME) have any strings in common.
That’s the same as asking whether L(M)∩L(ME) is non-empty. We know
how to make a DFA accepting the intersection of two languages, and we
know how to test whether the language of a DFA is non-empty....

The algorithm

Algorithm 15: DFA AcceptAnyEven
Input: a DFA M
Decides: does L(M) contain any even-length strings?

construct a DFA ME such that L(ME) = the strings of even length ;
construct a DFA P such that L(P) = L(M)∩L(ME) ;
call Algorithm DFA Emptiness on P ;
if L(P) is empty then

return NO
else

return YES

2. Given a DFA M: Does M accept every even length string? (This is not the
same as asking whether M accepts precisely the even-length strings.)

3. Given a DFA M: Does M reject infinitely many strings?

168

15 DECISION PROBLEMS ABOUT REGULAR LANGUAGES

4. Given DFAs M and N: Do M and N differ on infinitely many inputs? (More
formally: is the symmetric difference between L(M) and L(N) infinite?)

5. Given RegExps E and F : Do E and F define the same language?

169

16 CONTEXT-FREE GRAMMARS

Part III

Context-Free Languages

16 Context-Free Grammars

A context-free grammar (typically abbreviated CFG) is a formalism for generating
strings. It does so using rules8 that rewrite strings, starting with a special start
symbol. It is useful to allow other, auxiliary symbols to hierarchically structure the
rewriting. So we make a distinction between this auxiliary alphabet, of variables
and the alphabet of terminals over which we build our output strings. Here is the
formal definition.

16.1 Definition. A context-free grammar is a 4-tuple

G = 〈Σ,V,P,S〉

where

- V is a finite set, called the set of variables9

- Σ is a finite set, called the terminal alphabet

- S ∈V is distinguished variable, called the start symbol

- P is a set of rules, of the form

X → β

where X ∈V and β is an arbitrary string over V ∪Σ.

Here is how grammars generate strings of mixed terminals and variables.

16.2 Definition (Derivation in a CFG). Let G be a CFG, and let σ be a string over
(V ∪Σ). If there is a rule X → β in G, and σ is of the form σ1Xσ2 then we may
make a derivation step from X, obtaining the string σ1βσ2. We write

σ1Xσ2 =⇒ σ1βσ2

If σ and τ are strings over (V ∪Σ), a derivation from σ to τ, written σ =⇒∗ τ is a
finite sequence of 0 or more derivation steps from σ to τ. We sometimes say that τ

can be generated from σ.
8called productions by some authors
9Some authors call these nonterminals

170

16 CONTEXT-FREE GRAMMARS

16.3 Definition (Language of a Grammar). The language L(G) generated by G is
the set of terminal strings that can be generated from the start symbol:

L(G)
def
= {x ∈ Σ

∗ | S =⇒∗ x}

Note that although we defined derivations using strings that can be made up both
variables and terminals, the language of grammar is by definition a set of terminal
strings.

16.4 Example. A baby example:

S → aS

S → Sb

S → λ

A very convenient shorthand is to communicate more than rule with the same left-
hand side by writing them on a single line with the right-hand sides separated by
“|”. So another way to write down the previous grammar would be

S → aS | Sb | λ

Here is a derivation, of the string aab.

S =⇒ aS =⇒ aaS =⇒ aaSb→ aab

Note that along the way we derive, for example, the string aaS. But we do not
say that aaS ∈ L(G). As we said above, the set L(G) is by definition, that set of
terminal strings that can be derived.

It is easy to see that the language generated by this grammar is the set
{anbm | n,m≥ 0}.

16.5 Check Your Reading. The order of the symbols in a rule matters! Suppose
we changed the previous example to be

S → aS | bS | λ

Convince yourself that this grammar generates all strings over {a,b}.

16.6 Example. Here is a context-free grammar G generating arithmetic expres-
sions. For simplicity here we assume that numbers are just single digits.

• The terminal alphabet Σ is {+,∗,0,1,2,3,4,5,6,7,8,9}

171

16 CONTEXT-FREE GRAMMARS

• The variable alphabet V is {E, I}.

• The start symbol is E.

• The rules are

E → E +E | E ∗E | I

I → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Usually we allow ourselves to present grammars less pedantically, by just giving
the rules. The variable alphabet V can be inferred: it’s just the set of symbols that
show up as the left hand sides of rules. The alphabet Σ can be inferred: it’s just
the set of symbols in the grammar that are not variable symbols. The start symbol
needs to be declared explicitly.10

Here is a derivation in the grammar G.

E =⇒ E +E =⇒ E +E ∗E =⇒ I +E ∗E =⇒ 2+E ∗E

=⇒ 2+E ∗ I =⇒ 2+E ∗3 =⇒ 2+ I ∗3 =⇒ 2+5∗3

This derivation derives the string 2+5∗3. So we say that 2+5∗3 ∈ L(G).

It is worth being conscious of the completely different perspective afforded by
grammars and automata. Regular Grammars generate strings, they are output-only
“machines.” Automata accept strings, they are input-only. When we develop an
equivalence between these two formalisms we are doing something more subtle
than mere simulation.

Suppose we didn’t want to be restricted to expressions where the numbers were
single digits? A great thing about grammars is that they compose easily.

16.7 Example (Decimal Numbers). Here is a grammar to generate decimal
representations of natural numbers. We don’t want them to start with a 0 ...

Σ = {0,1, . . . ,9}

V = {N,M}

The start symbol is N.

N → 1M | 2M | . . . | 9M

M → 0M | 1M | 2M | . . . | 9M | λ

10Though if the grammar writer uses “S” as one of the variables, they will typically not bother to
say out loud that S is the start symbol.

172

16 CONTEXT-FREE GRAMMARS

Now here is a grammar for arithmetic expressions over (decimal representations
of) natural numbers.

E → E +E | E ∗E | N

N → 1M | 2M | . . . | 9M

M → 0M | 1M | 2M | . . . | 9M | λ

We will systematically explore this idea of building grammars in a modular way in
Section 16.4.

16.1 Parse Trees

Parse trees, sometimes call derivation trees, are similar to derivations in that they
witness the fact that a grammar can derive a word, but they are much more
informative.

Fix a grammar G = (Σ,V,P,S). A parse tree is a tree whose interior nodes are
elements of V , whose root is S, whose leaves are elements of Σ, which is built
according to P. Namely, the children of each interior node X of the tree correspond
to an application of one of the rules of the grammar with left-hand-side X . Each
derivation determines a (unique) parse tree.

It is a little tedious to give a formal definition of this but the idea is totally clear
once you see an example.

16.8 Example. Refer to the grammar in Example 16.6.

Here is a parse tree corresponding to the derivation given there, yielding 2+5∗3.

E

E

E

I

3

*E

I

5

+E

I

2

173

16 CONTEXT-FREE GRAMMARS

Think of the tree as “growing” downwards, guided by the derivation. It is not a
coincidence that there are eight steps in the derivation in Example 16.6 and there
are eight interior nodes of this tree!

16.9 Check Your Reading. Make sure you see how this parse tree is gotten from
the derivation.

The reason that parse trees are important is that they impose a structure on a derived
string. That is, when we have a parse tree we know more than just the fact that a
string is derivable from a grammar: we know how.

Most of all, parse trees allow us to attach meanings to strings. When the
expressions we are working with are code or computations, the parse trees tell us
how to evaluate to expression. Look at the tree above: the natural way to evaluate
this is to work bottom-up evaluating subtrees as we go, to arrive at 17.

16.10 Example. Refer to the grammar in Example 16.4, and the derivation

S =⇒ aS =⇒ aaS =⇒ aaSb→ aab

Here is the corresponding parse tree

S

S

S

bS

λ

a

a

There is a slight awkwardness concerning the erasing rule S→ λ that was used at
the last step of the derivation. In writing down a derivation we can indicate the
erasing rule by just erasing the symbol S. But when we draw a parse tree, it looks
dumb to have a line coming down from S with nothing at the end. But if we don’t
draw a line from S there is nothing to indicate that invoked a rule (it looks like
maybe we aren’t finished). So what people do is draw a line ending in λ, even
though λ isn’t an alphabet symbol. So when you read off the “yield” of the parse
tree, you just skip over the λ.

174

16 CONTEXT-FREE GRAMMARS

16.1.1 Parse Trees vs Derivations

Given any derivation, we can associate a unique parse tree in a straightforward
way. But given a parse tree, there can be many corresponding different derivations.
Derivations impose a linear ordering on “events” that is lost in displaying the parse
tree.

16.11 Check Your Reading. For the parse tree above for the string 2+3*5, build
several derivations, each of which would yield that tree.

Is there a natural way to get a one-to-one correspondence between parse trees and
derivations? Yes:

16.12 Definition. A leftmost derivation is one is which, at every step, the variable
symbol that is leftmost in the current string is the one that is rewritten.

It is not hard to see the following fact

For every parse tree T there is a unique leftmost derivation yielding
T .

16.13 Check Your Reading. The derivation shown in Example 16.6 is not
leftmost. Build a leftmost derivation for 2*3+5, one that yields the parse tree we
showed.

Now build a different leftmost derivation for 2*3+5. Build its parse tree. Since this
leftmost derivation you just built is different from the first one you built, it will yield
a different tree than the one we showed in the example.

16.14 Check Your Reading. Really, the only reason to even define the notion of
“leftmost derivation” is so that we have some canonical particular derivation to
pick out that corresponds to a parse tree.

But there is nothing special about “leftmost”. Write down the obvious definition of
“rightmost derivation” then satisfy yourself that for every parse tree T there is a
unique rightmost derivation yielding T .

The extra information contained in a derivation is typically of no use to us... Some
authors prefer to treat derivations as primary, though. So reading about context-
free grammars you may hear a lot of talk about leftmost derivations. But the parse
trees are where the action is.

175

16 CONTEXT-FREE GRAMMARS

16.2 Regular Grammars

In this section we will introduce a certain constrained form of context-free
grammar, which will give a convenient new perspective on regular languages.

16.15 Definition. A regular grammar is a context free grammar such that all of its
productions are of the form

X → aY or X → λ

where X ,Y ∈V and a ∈ Σ.

Of course it is allowed that X = Y in the definition above.

16.16 Examples.

1. The grammar in Example 16.7 is regular.

2. Here is a grammar that generates {anbn | n≥ 0} (not the same as a∗b∗, right?)
that is, where the numbers of as and bs must be equal.

S → aSb | λ

This grammar is not regular. And in fact we cannot replace this grammar
with a regular grammar generating the same language (we will be able to
prove this eventually).

3. Some authors define regular grammars slightly differently, allowing an
additional form of rule, namely: A → a. But it is easy to see that any
grammar using such rules can be transformed into an equivalent grammar
which is regular according to our definition.

4. Caution: just because a grammar is not a regular grammar, that doesn’t
mean that the language it generates isn’t a regular language. The following
grammar is not regular

S → aS | B

B → Bb | λ

but it generates the language namely a∗b∗, which of course is a regular
language. The following regular grammar generates the same language.

S → aS | bB | λ

B → bB | λ

It turns out that regular grammars can be viewed as really nothing more than a
notational variant of NFAs.

176

16 CONTEXT-FREE GRAMMARS

Building an Automation from a Regular Grammar If we start with a regular
grammar G = (Σ,V,S,P) then we can build an automaton M in an obvious way.
The states qi of M are in one-to-one correspondence with the variables Qi of G;
the single start state s corresponds to be the start symbol S of G; and for each
production Qi→ aQ j in G we have an automaton transition qi

a−→ q j in M. Finally,
whenever Q→ λ is a production of G we declare the corresponding state q of M to
be accepting.

16.17 Example. Let G be the following regular grammar (whose start symbol is
Q0).

Q0 → aQ0 | bQ0 | bQ1

Q1 → aQ2 | bQ2

Q2 → λ

When we do the construction outlined above we get the automaton in Example 8.4.

Once we prove that the automaton thus constructed recognizes the same language
that the grammar generates, we have the following.

16.18 Lemma. For any regular grammar G there exists an NFA M such that
L(M) = L(G).

Proof. Easy, the derivations in G are in obvious correspondence with the runs of
M. ///

Building a Regular Grammar from an Automaton Each NFA yields a regular
grammar in a very natural way.

We give a complete proof that the construction works, not because anything is
tricky, but just for practice.

16.19 Lemma. For any NFA M, there exists a regular grammar G such that
L(G) = L(M).

Proof. Suppose M = (Σ,Q,δ,s,F). For each state qi of M let us introduce a
grammar-variable symbol Qi, and let VQ be the set of such symbols. The start
symbol S of the grammar is Vs the variable corresponding to the start state of the
automaton. The productions P of G are given as follows.

177

16 CONTEXT-FREE GRAMMARS

• whenever qi
a−→ q j is a transition in M, P has a production

Qi → aQ j

• for each accepting state qi ∈ F of M, P has a production

Qi → λ

Let us prove that L(G) = L(M). This is one of those cases where the trick is to
prove something stronger than what is asked for.

Claim. For all states p and r of M and every string x ∈ Σ∗, p x−→−→ r if
and only if we have a derivation P⇒∗ xR in G.

This is an easy induction over the length of x, which we won’t give here.

But, once we have that we get the final result we want, by reasoning as follows.

• Suppose x∈ L(M). Then s x−→−→ r where s is the start state r is some accepting
state. By the claim, in G we have S⇒∗ xR. But since r is accepting in M,
we also have the production R→ λ in G. Putting these together we have
S⇒ Si⇒∗ x, which means x ∈ L(G).

• Conversely, if x ∈ L(G) then S ⇒∗ x. By the form of the productions in
G this can only happen if the derivation looks like S⇒∗ xR⇒ x, for some
some accepting state r from M. By the claim, s x−→−→ r in M. But this says
that x ∈ L(M).

///

The takeaway here is that regular grammars and automata are really just different
notations for the same thing. We state this as a corollary to Lemmas 16.19
and 16.18.

16.20 Corollary. Regular grammars generate precisely the regular languages.

This also tells us that the idea of “context free language” extends the idea of
“regular language.”

16.21 Corollary. Every regular language is context-free.

We know that we don’t have the converse of this claim: consider the language
{anbn | n ≥ 0}, which we know to be non-regular and have shown to be context-
free.

178

16 CONTEXT-FREE GRAMMARS

16.3 More Examples and non-Examples

16.22 Example. Consider the language {anbn | n≥ 0}

This is our standard example of a non-regular language. But it is easily seen to be
context-free:

S → aSb | λ

16.23 Example (Palindromes). A palindrome is a string x that reads the same
backwards and forwards, in other words x is equal to its reversal: x = xR. The set
of palindromes is another example of a language that is context-free though it is
not regular.

Here is a CFG generating the set of palindromes over the lower case letters
Σ = {a,b,c, . . . ,z}:

S → λ | aSa | bSb | cSc | . . . | zSz

S → a | b | c | . . . | z | λ

A typical derivation:

S =⇒ rSr =⇒ raSar =⇒ racScar =⇒ racecar

16.24 Example (Doubles). Another way to describe the even-length palindromes
is as the set of all words of the form xxR as x ranges over all words. It is
easy to tweak the grammar above to get just the even-length palindromes. Thus
EPal = {w | for some x ∈ Σ, w = xxR } is a context-free language.

Interestingly, if we consider the set of “doubled words” D= {w | for some x ∈ Σ, w = xx }
this is not a context-free language. It’s tricky to prove, but it is a fact that there can
be no CFG generating D.

On the other hand, the complement of D, D= {w | w cannot be written as xx for any x ∈ Σ }
is a context-free language. (This is not so easy to see . . .)

16.25 Example (A Non-Context-Free Language). Consider the language {anbncn |
n ≥ 0} It can be shown that there is no content-free grammar generating this lan-
guage. The proof is given in Section 22.1.

16.26 Example (Another Non-Context-Free Language). The following language
is not context-free. {anbmcndm | n,m≥ 0}We omit the proof here.

179

16 CONTEXT-FREE GRAMMARS

The next example illustrates an important point. One can declare any collection of
things an alphabet: they don’t have to be things that you think of as individual
“letters.” In particular, when parsing a natural language it is common to treat
dictionary words as comprising the terminal alphabet.

16.27 Example (Natural Language). For example let us declare the set of terminal
symbols to be

Σ = {a, the,boy,girl,dog,chased,heard,saw}

and the set of variables to be

V = {S,NP,V P,Det,N,V rb}

Think of NP as standing for “Noun Phrase”, V P as standing for “Verb Phrase”, Det
as standing for “Determiner”, N as standing for “Noun”, and V rb as standing for
“Verb”.

Now let’s consider the rules

S → NP V P

NP → Det N

V P → V rb NP

Det → a | the

N → boy | girl | dog

V rb → ate | saw | heard

Here’s a derivation

S =⇒ NP V P

=⇒ Det NP V P

=⇒ the NP V P

=⇒ the boy V P

=⇒ the boy V NP

=⇒ the boy chased NP

=⇒ the boy chased the N

=⇒ the boy chased the dog

16.28 Check Your Reading. Make a derivation of the sentence

the dog ate a boy

180

16 CONTEXT-FREE GRAMMARS

Are there finitely many sentences derivable in this grammar, or infinitely many?

16.29 Check Your Reading. Continuing this example: Add the symbol and to Σ

and add this rule to the grammar:

S → S and S

What new sentences can you derive?

Are there finitely many sentences derivable in this grammar, or infinitely many?

16.30 Example (Arithmetic Expressions). Here is a CFG generating the legal
infix expressions over + and ∗ and decimal numbers. The terminal alphabet
is Σ = {+,−,∗,/,0,1, . . . ,9} The variable alphabet is V = {E,N,M}; the start
symbol is E.

You will recognize that we have “inlined” the earlier grammar for decimal
numbers. This is a point worth noting: in that earlier grammar N was the start
symbol. Here it plays an auxiliary role. And in a larger grammar, say for an entire
programming language, the expressions generated here will be auxiliary, so the E
will not be a start symbol there.

E → E +E | E−E | E ∗E | E/E | N

N → 1M | 2M | . . . | 9M

M → 0M | 1M | 2M | . . . | 9M | λ

16.31 Example (A Programming Language). Let’s write a grammar for a little
programming language. As in the baby grammar above for a fragment of English,
we are going to take our terminal alphabet to consist of symbols that might, in
another context, be thought of as strings. In fact what happens in a compiler is that
there is an initial phase in which the input string of ASCII symbols is converted
into a string of symbols over a different alphabet in which something like “while”,
which is a string of length 5 over the ASCII alphabet gets converted into a single
symbol over a richer alphabet of “tokens”.

In our little example we take our alphabet Σ of tokens to be

Σ = {while,do,if,then,else, :=, ; ,a,b, . . .z,0,1, . . .9}

This is a set with 7 + 26 + 10 elements in it.

181

16 CONTEXT-FREE GRAMMARS

We take the alphabet of variables to be

V = {S,A,C,W}

And here are the rules. Let us assume that you successfully write a grammar for
programming-language identifiers in Exercise 135.

S → A | C | W | S;S

A → I := E

W → while E do S

C → if E then S else S

C → if E then S

E → [the rules for expressions Example 16.30]

E → I

I → [the rules for identifiers from Exercise 135]

16.32 Check Your Reading. Make a derivation of the following program.

while x do y := y+1; x := x− y

16.4 Closure Properties, or How to Build Grammars

With NFAs one of our themes was how to build complex machines out of simpler
ones. We can play the same games with grammars. In fact the constructions
themselves are easier. On the other hand, as we will see in Section 16.4.4, we
can’t do everything that we might like to do.

16.4.1 Union

Let two CFGs G1 = (Σ,V1,S1,P1) and G1 = (Σ,V2,S2,P2) be given, with disjoint
variable alphabets.

182

16 CONTEXT-FREE GRAMMARS

We want to build a grammar that generates the union of the languages generated
by G1 and G2.

Algorithm 16: CFG Union
Input: two CFGs G1 = (Σ,V1,S1,P1) and G1 = (Σ,V2,S2,P2) with V1∩V2 = /0

Output: CFG G with L(G) = L(G1)∪L(G2)

Let S be a symbol not in V1∪V2 ;
the set of variables of G is (V1∪V2∪{S}) ;
S is the start symbol of G ;
The rules of G are those of P1∪P2 together with the new rules S → S1 and
S → S2

Proof of Correctness. To prove L(G1)∪ L(G2) ⊆ L(G): let w ∈ L(G1)∪ L(G2).
Without loss of generality we may assume w ∈ L(G1), let S1⇒∗ w be a derivation
of w in G1. Then S⇒ S1⇒∗ w is a derivation of w in G.

To prove L(G)⊆ L(G1)∪L(G2): let w ∈ L(G), via S⇒∗ w.

The first step of this derivation is either S⇒ S1 or S⇒ S2; without loss of generality
let us assume it is S⇒ S1. So we have S⇒ S1 ⇒∗ w in G, and now since we
assumed that the variables of G1 and G2 were disjoint, the part S1 ⇒∗ w of this
derivation is actually a derivation of G1. This means that w ∈ L(G1), so that
w ∈ L(G1)∪L(G2) as desired. ///

What if the original grammars G1 and G2 did not have disjoint alphabets in the
first place? It is not hard to see that we can always systematically rename the
variables in a grammar without changing the language generated (remember that
by definition the language generated by a grammar is a set of terminal strings).

16.4.2 Concatenation and Kleene star

Let two CFGs G1 = (Σ,V1,S1,P1) and G2 = (Σ,V2,S2,P2) be given, with disjoint
variable alphabets.

We can build CFGs to capture the union and Kleene star of the languages generated
by these grammars pretty easily. We won’t be as formal as we just were for union;
giving the intuition should be enough.

• To build a grammar G such that L(G) = L(G1)L(G2): add a new start symbol
S as above and add the single new rule S→ S1S2

183

16 CONTEXT-FREE GRAMMARS

• To build a grammar G such that L(G) = L(G1)
∗ add a new start symbol S as

above and add the new rules S→ S1S and S→ λ

16.33 Check Your Reading. Make proofs of correctness of those two procedures,
verifying that they do indeed construct grammars for concatenation and Kleene
star. Use the correctness proof for the union construction as a guide.

We have now done all the work required to prove the following

16.34 Theorem. Let A1 and A2 be context-free languages. Then

1. A1∪A2 is context-free.

2. A1A2 is context-free.

3. (A1)
∗ is context-free.

Proof. In each case the proof is: let G1 and G2 be context-free grammars with
L(G1) = A1 and L(G2) = A2. By renaming if necessary, arrange that G1 and G2
have disjoint sets of variables. Use the appropriate algorithm described about to
construct a new grammar generating the language desired. ///

16.4.3 Building Grammars Systematically

The algorithms we gave showing the set of context-free languages to be closed
under union, concatenation and Kleene star are really design strategies for building
complex grammars.

16.35 Example. Let’s make a grammar for

K = {aib jck | i 6= j or j 6= k}

The strategy is: we recognize K as a union of K1 = {aib jck | i 6= j,k ≥ 0} and
K2 = {aib jck | i ≥ 0, j 6= k} so that if we have grammars for each of these we can
know how to combine.

Look at K1. We can recognize that as a concatenation of K11 = {aib j | i 6= j} and
K12 = {ck | k ≥ 0} So we will build grammars for each of these, then combine
them.

Now look at K11. We can recognize that as a union, of the two cases K111 and K112
where i > j and i < j.

184

16 CONTEXT-FREE GRAMMARS

Here is a grammar for K111,{aibi | i > j}. The variable A is there to generate
non-nil strings of as.

S111 → aS111b | A

A → aA | a

A grammar for K112 is similar, using a variable B to generate non-nil strings of bs.

So then here is a grammar for K11.

S11 → S111 | S112

S111 → aS111b | A

S112 → aS112b | B

A → aA | a

B → bB | b

Thus here is a grammar for K1

S1 → S11 S12

S11 → S111 | S112

S111 → aS111b | A

S112 → aS112b | B

A → aA | a

B → bB | b

S12 → cS12 | λ

Let’s call this grammar G1. Now a grammar for K2 is a simple modification of the
above. Let’s call that G2

Finally we get our answer.

S → S1 | S2

+ all the rules of G1

+ all the rules of G2

Please contemplate the fact that this just what you do when you write programs:
break a problem down into smaller pieces until get to a small-ish problem you have
to solve by cleverness, then combine those pieces in a systematic, well-understood
way.

In the exercises you will apply these ideas to building context-free grammars
corresponding to regular expressions.

185

16 CONTEXT-FREE GRAMMARS

16.4.4 What About Intersection and Complement?

The set of regular languages are not only closed under union, concatenation, and
Kleene star, but under complement and intersection as well. We’ve seen how
convenient it is that we can build grammars tracking union, concatenation, and
Kleene star for languages, so it comes as a disappointment to learn that, in general,
context-free languages do not behave so well with respect to complement and
intersection.

16.36 Theorem. The class of context-free languages are not closed under
intersection.

Proof. We have to use the fact that the following language is not context-free:
{aibici | i ≥ 0}. (We mentioned this language in Example 16.25; a proof that it is
context-free is in Section 22.1.)

Then we can exhibit two context-free languages A1 and A2 such that A1∩A2 is not
context-free. Take

A1 = {anbncm | n,m≥ 0} and A2 = {ambncn | n,m≥ 0}

It very easy to write grammars for A1 and for A2. (You are asked to do so in
Exercise 129.) But A1∩A2 is {anbncn | n≥ 0} which we know to be non-context-
free. ///

16.37 Theorem. The class of context-free languages is not closed under
complement.

Proof. For any two sets X and Y ,

X ∩Y = (X ∪Y)

So if the class of context-free languages were closed under complementation, then
since we know they are closed under union, it would follow that the context-
free languages were closed under intersection. This would contradict the previous
result. ///

A mild version of closure under intersection does hold, though.

16.38 Theorem. Let A be context-free and let R be regular. Then A∩R is context-
free.

Proof. The easiest proof of this uses pushdown automata, covered later. So we
leave this unproved for now. ///

186

16 CONTEXT-FREE GRAMMARS

16.5 There Are Countably Many CFLs

How many context-free languages are there? Obviously there are infinitely many:
if nothing else, any regular language is context-free. But is the number of CFLs
countable or uncountable? Remember that the set of all languages over an alphabet
is uncountable.

We are going to show that there are only countably many context-free languages.
The strategy is pretty much exactly the same as the strategy we used to show that
there are only countably many regular languages. Namely we will observe that

1. every context-free language can be associated with at least one grammar

2. one can encode grammars as finite strings

3. there are only countably many finite strings

The only difference between this development and the one for regular languages is
that we encoded NFAs then, and we encode grammars now.

Since things are so similar we just give the outline here.

Step 1: Encoding grammars

Just as for NFAs we first agree to normalize our grammars, that is, use a standard
set of symbols for the terminal and variable alphabets.

Then we just define a convention for “serializing” grammars, encoding them as
strings.

This is all totally routine, and it doesn’t matter at all exactly how you do it. All
that matters is that one can translate back and forth between grammar and their
string-encodings.

16.39 Check Your Reading. Make up your own personal method for encoding
grammars as strings. Verify that no two grammars are encoded as the same string;
that’s all that matters!

Step 2: Concluding countability

Armed with your encoding method, we can prove the following.

16.40 Theorem. There are only countably many context-free languages.

187

16 CONTEXT-FREE GRAMMARS

Proof. For each context-free L, let GL be the context-free grammar that generates
L and whose encoding is lexicographically least among all the CFGs generating L.

This defines an injective function from context-free languages to the set of finite
strings over the encoding alphabet. Since the set of finite strings is countable we
can conclude that the set of context-free languages is countable. ///

16.41 Corollary. For any finite alphabet Σ, there exist languages over Σ that are
not context-free.

Proof. We proved earlier that there were uncountably many languages over Σ, so
Theorem 16.40 tells us that they cannot all be context-free. ///

As with the regular languages, this is not perfectly satisfying since it doesn’t give
us any interesting concrete examples of non-context-free languages. We have
other techniques for exhibiting specific examples of non-context-freeness. See
Section 22

188

16 CONTEXT-FREE GRAMMARS

16.6 Exercises

Exercise 126. Some easy stuff

1. What’s the difference between a grammar and a language?

2. Can a grammar be infinite?

3. Does it make sense to talk about taking the complement of a grammar?

4. Does it make sense to talk about a grammar accepting a string?

Exercise 127. (from Kozen) Consider the following grammar G:

S → ABS | AB,

A → aA | a

B → bA

Which of the following strings are in L(G)? Prove your answers.

1. aabaab

2. aaaaba

3. aabbaa

4. abaaba

Exercise 128. What language does the following grammar generate?

S → aB | bA

A → bAA | aS | a

B → aBB | bS | b

Hint. Don’t try to do problems like this by staring at the rules. Do a bunch of
derivations.

Exercise 129. Construct a context-free grammar generating the language

A1 = {anbncm | n,m≥ 0}

Construct a context-free grammar generating the language

A2 = {ambncn | n,m≥ 0}

Exercise 130. For each of the following languages K, construct a context-free
grammar G such that L(G) = K.

189

16 CONTEXT-FREE GRAMMARS

1. {aibickdk | i,k ≥ 0}

2. {aib jckdm | i = j or k = m}

3. {ai1bi1ai2bi2 . . .ainbin | n≥ 0, each i j ≥ 0}

Exercise 131. For each of the following languages K, construct a context-free
grammar G such that L(G) = K.

1. {aib j | i = 2 j}
Hint. Start with a grammar for {aibi | i≥ 0}, then make a little tweak.

2. {aib jck | i+ j = k}

Exercise 132. Let Σ = {+,∗,a,b}. Let K be the language of prefix arithmetic
expressions over Σ. Write a context-free grammar to generate K. Show parse trees
and leftmost derivations for several strings. Here are sample strings in K.

+ a a

+ a ∗ a b

+ + a b ∗ b a

+ a ∗ a + b b

Exercise 133. Prove that if A is context-free then the set AR of reversals of strings
in A is context-free.

Exercise 134. Look back at examples of DFAs and NFAs from previous sections,
and construct the corresponding regular grammars.

Exercise 135. Imagine a programming language where the legal identifiers are:
a string of lowercase letters and numbers, but which cannot start with a number.
Make a regular CFG generating these strings.

Exercise 136. Regular grammars as we have defined them are sometimes called
“strongly right-linear grammars.” A “strongly left-linear grammar” is one for
which all of its productions are of the form

X → Ya or X → λ

Show that strongly left-linear grammars and strongly right-linear grammars
generate the same class of languages.

190

16 CONTEXT-FREE GRAMMARS

Exercise 137. Inspired by Exercise 136, let’s define a new kind of grammar, called
a “left-right-linear” grammar, in which every production is one of the forms

X → aY or X → Ya or X → λ

We might then conjecture that “left-right-linear” grammar generate precisely the
regular languages.

Unfortunately this is false.

Remember that the following language A is not regular: A = {anbn | n≥ 0}. Show
that this A can be generated by a left-right linear grammar.

This shows that we cannot allow ourselves both left-linearity and right-linearity in
the same grammaar without moving beyond regularity.

191

17 PROVING CORRECTNESS OF GRAMMARS

17 Proving correctness of grammars

Here we explore how one proves that a certain CFG generates a certain language.

17.1 General Strategy

In order to prove that CFG G generates language L, you must do two things:

1. Prove that L(G)⊆ L.

To do this you typically use induction on the length of a derivation in G.

2. Prove that L⊆ L(G).

To do this you typically use induction on the length of a string in L.

Often the proof of (2) is significantly harder than the proof of (1). Sometimes what
you have to do is find some way to characterize the strings in L that helps you put
the kind of “structure” on them that the grammar induces.

17.2 Examples

17.1 Example. Equal as and bs

Let E be the set of strings over {a,b} with an equal number of as and bs.

Let G be the following CFG:

S→ λ | SS | aSb | bSa

We wish to prove that L(G) is E.

A solution

We will:

• first show L(G) is a subset of E,

• then show E is a subset of L(G).

192

17 PROVING CORRECTNESS OF GRAMMARS

Proof that L(G) is a subset of E: We claim that for all w in L(G), w is in E.

Since w is in L(G), there is a derivation of w.

We proceed by induction on the length of this derivation. So note that the induction
hypothesis is that: for any string u in L(G) which has a shorter derivation, u is in
E

If the length of the derivation of w is 1, then w must be the null string λ, which is
obviously in E.

Otherwise the derivation has one of 3 possible forms:

1. S⇒ aSb⇒∗ w or

2. S⇒ bSa⇒∗ w or

3. S⇒ SS⇒∗ w

In the first case w looks like aw′b and there is a derivation of w′ from S. This
derivation is shorter than the total derivation of w, so it satisfies the induction
hypothesis, so w′ is in E. Clearly, then, w itself is in E.

The second case is similar.

In the last case w looks like w′w′′ and there is a derivation of w′ from (the first)
S and a derivation of w′′ from (the second) S. Each of these derivations is shorter
than the total derivation of w, so each satisfies the induction hypothesis, so both w′

and w′′ are in E. Clearly, then, w itself is in E.

Since we have addressed all cases, this completes the proof of (1), that L(G) is a
subset of E.

Proof that E is a subset of L(G): We show that for every string w in E, w is derivable
in the grammar. We proceed by induction on the length of w.

There are three possibilities for the form of w:

1. w is the null string λ, or

2. w is of the form au, or

3. w is of the form bu.

(1) When w is the null string λ (which is indeed in E), obviously w is in L(G) by
the simple derivation S⇒ e.

193

17 PROVING CORRECTNESS OF GRAMMARS

(2) When w is au:

Define the following function on initial substrings x of w [an initial substring of w
is simply “the first k characters of w” for some k]:

d(x) = (#(a) in x)− (#(b) in x)

Note that d(w) = 0, but for other x, d(x) may fluctuate positive and negative. Now
let x be the first non-null initial substring of w where d(x) = 0. It may be that (i)
x is w itself, or it may be that (ii) the first such x occurs before the end of w. We
examine these two cases.

(i) If x is w, this means that w must look like aw′b. Furthermore the string w′ has
#(a) = #(b), and so is in E. Since w′ is shorter than w, the induction hypothesis
applies so w′ is in L(G). This gives us a derivation of w itself, as follows:

S⇒ aSb⇒∗ aw′b

(The aSb⇒∗ aw′b part above is justified by the fact that w′ has a derivation from
S)

(ii) On the other hand, if x is not all of w, we may let y be the part of w following
x, and write w as xy. Note that neither x nor y is null, and so therefore each of x
and y is shorter than w. Furthermore, since d(x) = 0, we must have x in E. And
since w itself is in E, we can further conclude that y is in E. Now the induction
hypothesis applies to both x and y, so the are each derivable. This means that there
is a derivation of w itself, namely:

S⇒ SS⇒∗ xS⇒∗ xy

as desired.

(3) The final thing to consider is when w starts with a b, which is to say that w
is bu. But this is completely symmetric with the case when w starts with an a, so
we needn’t repeat the details. Note that the function d(x) now starts out with a
negative value, just because the initial substring is ”b”. But we would still look at
the first x where d(x) = 0 and proceed accordingly.

This completes the proof of (2), that E is a subset of L(G).

17.2 Example. The grammar in Example 17.1 was simple in the following respect:
there was only the one variable S.

194

17 PROVING CORRECTNESS OF GRAMMARS

When—as is typical—a grammar has more than one variable, reasoning about
it involves reasoning not only about the strings that S generates but also about
the strings that other variables generate, since these interact with each other. For
instance consider this G:

S → cSc | A

A → aAb | λ

Suppose we want to prove that L(G) is {ckanbnck | k ≥ 1,n≥ 0} ?

To do so we need to prove both

1. S⇒∗ w if and only if w ∈ {ckanbnck | k ≥ 1,n≥ 0}

2. A⇒∗ w if and only if w ∈ {anbn | n≥ 0} .

Proving the second of these is straightforward (it uses the techniques the previous
example, but it is easier!) so let’s assume that has been done. Once we know that
about the strings derivable from A we can complete the proof.

Let K denote {ckanbnck | k ≥ 1,n≥ 0}. As before, we first show that L(G) ⊆ K.
Let w ∈ L(G). We show that w ∈ K by induction on the length n of the shortest
derivation witnessing w ∈ L(G). If the first step of the derivation is S⇒ cSc then
we know that w is of the form cw′c where S⇒ w′ by a derivation of length (n−1).
By induction, then, x′ is in K. So w = cw′c is clearly in K as well.

Conversely suppose w∈K; we wish to show w∈ L(G). We do this by induction on
the length of w. There is a little bit of cleverness involved: we do not decompose
w by naively peeling off its first element. Rather we (intuitively) peel off the first
and last elements occurrences of c in w, as follows.

Case 1. If w is of the form anbn, that is, if there are no c, then since we proved that
A generates all such w, we have the following derivation of w in G: S⇒ A⇒∗ w.

Case 2. Here w is of the form ckanbnck with k 6= 0. Thus w can be written as cw′c
where w′ is in K. Since w′ is shorter that w we know there is a derivation S⇒∗ w′.
Thus we can derive w, by S⇒ cSc⇒∗ cw′c = w.

17.3 Example. Even though the grammar in Example 17.2 had more than one
variable, it was still a simple case in the following sense: the two variables didn’t
interact. That is, we were able to reason about variable A on its own, then import
the result into reasoning about S. This worked because derivations starting with A
never involve any other variable.

195

17 PROVING CORRECTNESS OF GRAMMARS

Contrast that situation with this one.

S → bS | aA | λ

A → aS | bA

This grammar generates the set Evb of strings with an even number of bs. But we
cannot prove this by reasoning independently about the terminal strings derivable
from S and A independently.

Instead we use the techniques of simultaneous induction. We prove that

for all n,

1. if S⇒∗ w in n steps or fewer, then w has an even number of as,
and

2. if A⇒∗ w in n steps or fewer, then w has an odd number of as

simultaneously by induction on n. When we have done this we know that
L(G)⊆ Evb by invoking the first assertion.

We then prove that

for all words w,

1. if w has an even number of as then S⇒∗ w, and

2. if w has an odd number of as then A⇒∗ w

simultaneously by induction on the length of w. When we have done this we know
that Evb ⊆ L(G) by invoking the first assertion.

[Details of this argument are omitted for now . . .]

196

17 PROVING CORRECTNESS OF GRAMMARS

17.3 Exercises

Exercise 138. Prefixes: as versus bs Let G be the following grammar.

S → aS | aSbS | λ

Prove that L(G) is the set of strings w over {a,b} such that every prefix of w has at
least as many as as bs.

Exercise 139. Generating palindromes For this problem: let G be the grammar

S → aSa | bSb | λ

Prove that L(G) is the set of even-length palindromes over {a,b}. (A palindrome
is a string which is equal to its own reversal.)

Hint: Let E denote the set of even-length palindromes over {a,b}. As suggested
above, you need to:

1. Prove that L(G) ⊆ E, that is, every string generated by the grammar is a
palindrome. (Induct on the length of the derivation.)

2. Prove that E ⊆ L(G), that is, every palindrome is generated by the grammar.
(Induct on the length of the palindrome.)

Exercise 140. Consider the following grammar G.

S → aB | bA

A → a | aS | bAA

B → b | bS | aBB

1. Spend 5 minutes trying to decide what language G generates (try not to read
the next part of this question!)

2. Now suppose you are told that A⇒∗ w if and only if w has exactly one more
a than it has bs, and that B⇒∗ w if and only if w has exactly one more b than
it has as. Can you see what language G generates now? (All you need to do
is look at the two S-rules!)

3. Prove that L(G) is what you decided. Hint. the thing to do is prove,
simultaneously that

(a) A⇒∗ w if and only if w has exactly one more a than it has bs,

197

17 PROVING CORRECTNESS OF GRAMMARS

(b) B⇒∗ w if and only if w has exactly one more b than it has as, and

(c) S⇒∗ w if and only if . . .

Exercise 141. Compare these two grammars:

G1 :

S → ASB

A → a

B → bb

G2 :

S → AB

A → aA | a
B → bbB | bb

It is instructive to see how G1 and G2 differ . . . once you understand the difference,
define what L(G1) and L(G2) are, respectively, and prove your answers.

Hint. These are again situations where you will want to strengthen your induction
hypotheses to include assertions about A⇒∗ . . . and B⇒∗ . . . as well as S⇒∗ . . .

Exercise 142. Balanced parentheses

Let Σ be the alphabet {a,b}. But think of these as standing for the left and right
parentheses symbols, respectively (it’s kind of confusing to try to read long strings
of parentheses). If u is a string, let us use the notation #a(u) to stand for the
number of occurrences of the symbol a in u, and of course #b(u) is the number of
occurrences of b in u.

Consider the language Bal over Σ defined as follows: a string w is in Bal if

• #a(w) = #b(w), and

• for every initial substring u of w, #a(u)≥ #b(u).

Another way to express the conditions above is to define, for any string u, the
quantity #a(u)− #b(u), and say that as u ranges over larger and larger initial
substrings of w, this quantity never goes below 0 and must equal 0 when u reaches
w itself.

Convince yourself that Bal is the language which we intuitively describe as strings
of “balanced” parentheses.

Now let G be the following grammar.

S→ SS | aSb | λ

Prove that G generates the set Bal of “balanced parentheses”.

198

17 PROVING CORRECTNESS OF GRAMMARS

Exercise 143. Prove that the following grammar generates all strings over {a,b}.

S → aS | Sb | bSa | λ

Exercise 144. Equal as and bs again Let E be the set of strings over {a,b} with
an equal number of as and bs.

Let G be the following grammar.

S → aSbS | bSaS | λ

Prove that L(G) is E.

Yes, this is the same language as in the opening example. Very different grammars
can define the same language...

Hint: As in problem 142 consider the quantity #a(u)− #b(u) as u ranges over
prefixes of a string w. Characterize the strings in the language of equal numbers of
as and bs in terms of this function. Then you can proceed as in problem 142.

Exercise 145. Consider the language L over Σ= {a,b}: L= {x | x is not of the form ww}.
Show that L is context-free.

Hint. This is not easy. The following exercises gradually build up to a solution of
that problem.

1. Write a CFG for X = {uav | u,v ∈ {a,b}∗, |u|= |v|}.

2. Observe that a CFG for Y = {ubv | u,v ∈ {a,b}∗, |u|= |v|} is a trivial
variation on the one for X .

3. Describe the languages XY and for Y X . Observe that it is now easy to write
a CFG for the concatenations XY and for Y X .

4. Now note that a string is in {x | x is not of the form ww} precisely if

• |x| is odd, OR

• x looks like

y1 · · ·yi−1ayi+1 · · ·ymz1 · · ·zi−1bzi+1 · · ·zm

OR

• x looks like

y1 · · ·yi−1byi+1 · · ·ymz1 · · ·zi−1azi+1 · · ·zm

5. Put the pieces together.

199

18 AMBIGUITY

18 Ambiguity

The following grammar generates arithmetic expressions over a terminal alphabet
consisting of +, ∗, and numerals. To avoid distractions we will just use single-digit
numerals as basic expressions. It is traditional to use E as the start symbol for such
expression-grammars.

E → E +E | E ∗E | 0 | 1 | 2 | . . . | 9

Consider these three derivations

E =⇒ E +E =⇒ E +E ∗E =⇒ 2+E ∗E→ 2+5∗E→ 2+5∗3

E =⇒ E +E =⇒ E +E ∗E =⇒ E +5∗E→ E +5∗3→ 2+5∗3

E =⇒ E ∗E =⇒ E +E ∗E =⇒ 2+E ∗E→ 2+5∗E→ 2+5∗3

The three derivations yield the same terminal string. But one of these three is
different from the other two in an important way. The easiest way to see the
difference is to look at the respective parse trees.

First derivation:
E

E

E

3

*E

5

+E

2

Second derivation:
E

E

E

3

*E

5

+E

2

Third derivation:
E

E

3

*E

E

5

+E

2

The first second and derivations have the same parse tree, and the third one is
different.

Recalling our earlier discussion about parse trees being the carriers of meaning
for expressions, we see that the difference between the first two derivations is a
superficial one, the difference between the first and third (and between the second
and third) is a significant difference.

The difference between the parse trees would be manifest in the difference in
evaluating these two trees: clearly for the tree with + near the top of the tree we
would get the answer 2 + (5*3) = 17, while with * near the top of the tree we would
get the answer (2 + 5) * 3 = 21.

18.1 Definition. A context-free grammar is ambiguous if there is at least one string
w such that there is more than one parse tree yielding w in G.

200

18 AMBIGUITY

In light of our earlier observation that parse trees can be unique associated with
leftmost derivations, one can describe ambiguity in terms of derivations, if one
insists. Namely, a grammar is ambiguous if there is at least one string w such that
there is more than leftmost derivation of w in G.

18.2 Example. This grammar is ambiguous:

S → aS | Sa | λ

There are even two parse trees for deriving the single string a!

S

S

λ

a

S

aS

λ

An unambiguous grammar deriving the same strings is:

S → aS | λ

Deciding Ambiguity

Suppose we are given a grammar G. Can we decide algorithmically whether or not
G is ambiguous?

The answer is no. Certainly if we find two parse trees that yield the same string we
can say that G is ambiguous, but if we are searching for such a pair of trees, that
search is—at least naively—an infinite search. Is there a stopping condition that
can tell us when we have searched enough? The result is that, no, no such finite
search method can exist. This is pretty hard to prove, and we postpone it.

18.1 Removing Ambiguity From Grammars

Ambiguous grammars cause problems in applications (such as compiling program-
ming languages). In this section we see a few tricks for eliminating ambiguity. But
note two things:

• It is not always possible to eliminate ambiguity from a grammar (see the next
section)

201

18 AMBIGUITY

• Simply finding an unambiguous grammar is not usually good enough:
usually one wants to find an unambiguous grammar that generates the “right”
parse trees based on the intended semantics of the language. This will be
clearer when we see examples.

We won’t be systematic here, but just focus on two typical and important kinds of
ambiguity, precedence ambiguity and grouping ambiguity.

Precedence Ambiguity

The ambiguity that we saw at the beginning of the section had to do with operator
precedence. In our 2+5*3 example, there was a choice as to whether the + or the
* was higher up in the parse tree. Once we decide which operate we want to have
higher precedence, we can then engineer the grammar to enforce that. With the
familiar + and * it is convention for * to have higher precedence, so let’s do that.

By the way, note that when people speak of “higher precedence” what they are
saying is “lower in the parse tree.” Don’t get confused by that. (Lower in the parse
tree means “happens earlier in the evaluation process”, hence “precedes”, hence
“precedence.”)

The trick to enforcing precedence is to enforce “layers” in the grammar, which
typically involves introducing new variables.

Let’s work on the original expression grammar, but we introduce a variable F (for
“factor”).

E → E +E | F

F → F ∗F | 0 | 1 | 2 | . . . | 9

Now we can still derive 2+5 * 3, but in only one way:

E

E

F

F

3

*F

5

+E

F

2

And the natural way to evaluate this will do the multiplication
first, and get the answer 17.

202

18 AMBIGUITY

Overriding Precedence

Of course we want to provide our users with the possibility of overriding the
precedence our grammar has built in. For example she might really want to write
an expression with the meaning “2 plus 5, then multiply by 3”. The only way
to provide that possibility is to allow parentheses in the language, and write the
grammar so that a parenthesized expression is parsed appropriately. Luckily that
isn’t hard. Here is another enhancement of our expresion grammar, in which we
have added left and right parentheses to the terminal alphabet Σ.

E → E +E | F

F → F ∗F | (E) | 0 | 1 | 2 | . . . | 9

18.3 Example. Now the string (2 + 3) * 5 is in our language, and it is parsed as we
would expect:

E

F

F

5

*F

)E

blah...

(

where blah... is a parse tree for 2+3, not
shown, so as not to clutter the picture.

Grouping Ambiguity

A different kind of ambiguity can arise with a single operator.

18.4 Example. Consider this little expression grammar, with just the single
subtraction operator:

S → S−S | 0 | . . . | 9

This is ambiguous, since 4 - 3 - 2 can be derived in two ways

203

18 AMBIGUITY

S

S

S

2

-S

3

-S

4

S

S

2

-S

S

3

-S

4

The natural way to evaluate these would yield 3 and -1 respectively. Assume
we would like to make a grammar that enforced left associativity for -, that is,
preferring the answer -1. How do we do it? The trick is to make sure that the
symbol S can only be recursive “on the left.” To do that we introduce another
variable, T , to help out.

S → S−T | T

T → 0 | . . . | 9

Now we can still derive 4-3-2, but in only one way:

S

T

2

-S

T

3

-S

T

4

18.5 Check Your Reading. Make a grammar for exponentiation (use any symbol
you like , maybe an up-arrow ↑) but enforce right associativity.

18.6 Example. Let’s put the two ideas together, to get an expression grammar
that eliminates precedence ambiguity and grouping ambiguity. Let’s agree that
multiplication has higher precedence than addition, and the addition should
associate to the left, while multiplication should associate to the right. (There no
reason for left vs right choice except for the sake of making a better example)

204

18 AMBIGUITY

E → E +T | T

T → I ∗T | I

I → 0 | 1 | 2 | . . . | 9

18.2 Inherent Ambiguity

Suppose we are given a grammar G that we know to be ambiguous. Can we always
construct an unambiguous equivalent G′? whether or not G is ambiguous?

The answer is no. There exist grammars G that are ambiguous but such that there
are no unambiguous grammars generating the same language.

18.7 Example.

S → AB | C

A → aAb | ab

B → cBd | cd

C → aCd | aDd

D → bDc | bc

The grammar generates

K = {anbncmdm | m,n≥ 1}∪{anbmcmdn | m,n≥ 1}

18.8 Check Your Reading. Build two derivation trees for the string aabbccdd.

It is a little complicated to prove that the language K can have no unambiguous
grammar generating it, so we won’t prove it here.

But you should be able to make yourself believe it, if you think about it for a little
while...

18.9 Definition. A context-free language K is inherently ambiguous if every
context-free grammar generating K is an ambiguous grammar.

Please note the distinction between Definition 18.9 and Definition 18.1. One gives
a property of grammars, the other gives a property of languages.

205

18 AMBIGUITY

18.3 Exercises

Exercise 146. Basic ambiguity For each grammar, decide whether it is ambiguous
or not. If it is, prove it (by exhibiting a string with two different parse trees). Then
find an unambiguous grammar generating the same set of strings.

Hint. Don’t feel constrained to apply our systematic methods for addressing
precedence and grouping ambiguity. These problems are little self-contained
puzzles that don’t necessarily fit those patterns.

Remember that it is not true that every ambiguous grammar can be replaced
by an unambiguous grammar generating the same strings. But in this problem
you may be confident that the ambiguous grammars below do have unambiguous
counterparts.

(Most of these grammars are from [Sud97])

1.

S → aS | Sb | ab

2.

S → aA | λ

A → aA | bB

B → bB | λ

206

18 AMBIGUITY

3.

S → AaSbB | λ

A → aA | a

B → bB | λ

4.

S → aSb | aSbb | b

5.

S → A | B

A → abA | λ

B → aBb | λ

Exercise 147. Ambiguity and arithmetic I

Let G be the following grammar.

E → E +E | E ∗E | I

I → a | b | c

Let G∗ be the following grammar.

E → E +T | T

T → T ∗ I | I

I → a | b | c

1. The grammar G is ambiguous not only because the precedence of the
operators is not determined, but also because the associativity of the
individual operators + and * is not determined. The grammar G∗ is
unambiguous, and ensures that + and * are parsed as left-associative
operators.

Change the grammar of Figure G∗ so that it is still unambiguous and
generates the same strings, but with + parsed as being right-associative and
* as left-associative.

207

18 AMBIGUITY

2. Suppose we add a new terminal “−” to the language, intended to denote
subtraction. Suppose that we enrich the grammar G∗ to include subtraction
as a binary operator, so that if E1 and E2 are expressions, then so is E1−E2.

Enrich the grammar G∗ to get an unambiguous grammar generating
arithmetic expressions including subtraction. Your grammar should make
subtraction left-associative and at the same level of precedence as +.

3. Suppose we add a new terminal ↑ to the language, intended to denote
exponentiation. That is, if U and W are expressions, then U ↑W is to be
an expression, intuitively denoting “U raised to the power W”.

Enrich the grammar G∗ to get an unambiguous grammar generating
arithmetic expressions including exponentiation. Your grammar should
induce the usual rules of precedence involving exponentiation, that is, that ↑
binds more tightly than any other operator.

Note that exponentiation is not associative. Repeated exponentiation
conventionally groups to the right. For example, the conventional value of
2 ↑ 3 ↑ 2 is 2 ↑ 9. Be sure your grammar induces the correct grouping!

4. Extend the grammar G∗ to allow the comparison operators = and <. They
should all be left-associative and at the same level of precedence, below that
of +. (That is, an expression like a+b = c should have a parse tree with the
= appearing higher than the +.)

Exercise 148. Ambiguity and arithmetic II (from HMU) The following grammar
generates prefix arithmetic expressions over +, ∗, and −.

E → +EE | ∗EE | −EE | I

I → a | b | c

Build a parse tree for the term +∗−abab.

Is this grammar ambiguous? Explain why or why not.

Exercise 149. Ambiguity and Boolean logic Here is a grammar G generating
formulas of propositional logic over the alphabet Σ = {∧,∨,≡,¬,(,), p,q,r,s, . . .}

B → B∧B | B∨B | B≡ B | ¬B | (B) | I

I → p | q | r | s | . . .

This grammar is ambiguous.

Write an unambiguous grammar G′ generating the same strings, enforcing the rules
that

208

18 AMBIGUITY

• the binary operators are left-associative,

• ¬ has highest precedence, followed by ∧, then ∨, then ≡ (but parentheses
can override these precedences).

For example, the parse tree for p≡ ¬q∧q∨ r should have ≡ as the operator at the
top of the tree, with ∨ at the next level, ∧ at the level below that, and ¬ applied to
the symbol q alone.

Exercise 150. Ambiguity and programming languages

Consider the following grammar over the alphabet

Σ = {if,then,else,statement,condition}

S→ ifC then S

S→ ifC then S else S

S→ statement

C→ condition

If we interpret S as a variable standing for statements in a programming
language and we interpret C as a variable standing for boolean conditions,
then the above grammar generates “if-then” and “if-then-else” statements. (of
course in a grammar specifying more details we would expand statement and
condition...)

1. Show that this grammar is ambiguous.

2. This ambiguity is known as the “dangling else” problem; explain what this
ambiguity means in terms in the meaning of real programming language
statements.

3. The convention in most programming languages is that a statement which
is ambiguous in the sense that you discovered above should be interpreted
using the following rule: an else is always paired with the closest
preceding if if that doesn’t already have an else paired with it. Give
an unambiguous grammar which enforces this rule.

Exercise 151.

1. Be able to explain the difference between G is an ambiguous context-free
grammar and L is an inherently ambiguous context-free language.

209

18 AMBIGUITY

2. Does it make sense to talk about a language being ambiguous?

3. Does it make sense to talk about a grammar being inherently ambiguous?

4. Does it make sense to talk about a parse tree being ambiguous?

210

19 REFACTORING CONTEXT-FREE GRAMMARS

19 Refactoring Context-Free Grammars

Sometimes we would like to change a grammar into another grammar that
generates the same language but has nicer properties. The motivation is that we
want to make equivalent “nice” forms of grammars to make them easier to reason
about. Think of this as “refactoring” grammars.

The results are important, but equally important is the set of techniques used. Focus
on the idea of transforming an object to obtain an end-result while maintaining an
invariant, and reasoning about the construction using induction.

There is a theme running through this chapter, the notion of a worklist algorithm.
These are simply algorithms in which a list of tasks is maintained, and at each
stage we grab a task and complete it, perhaps adding new tasks to the worklist, and
keep going until the worklist is empty. Such algorithms arise in lots of different
scenarios.

19.1 Eliminating Useless Rules

The intuition here is that grammar variables that cannot be reached from the start
symbol are “dead code”, and variables that cannot lead to terminal strings may as
well never be generated.

19.1 Definition.

• A variable A in a grammar G is reachable if there is some G-derivation
S⇒∗ αAβ.

• A variable A in a grammar G is generating if there is some G-derivation
A⇒∗ w with w ∈ Σ∗.

• A variable A in a grammar is useful if it is both generating and reachable,
otherwise we say that it is useless.

• A rule is a grammar is useless if it involves any useless variables.

To get rid of useless rules in a grammar G, we must first compute which variables
of G are useful, that is, which variables are reachable and generating.

211

19 REFACTORING CONTEXT-FREE GRAMMARS

19.1.1 Computing Reachable Variables

Computing the reachable variables is very easy.

Algorithm 17: Compute Reachable Variables
Input: a CFG G = (Σ,V,S,P)
Output: the set of reachable variables of G
initialize: V ′ = {S};
repeat

if there is a rule A→ α with A ∈V ′ then
add each variable of α to V ′

until no change in V ′;
return V ′

Proof of Correctness. To argue the correctness of this algorithm we need to

• argue that it terminates on all inputs, and

• argue that when it terminates then V ′ is indeed the set of reachable variables.

The former claim, termination, follows from the observation that the number of
steps of the repeat loop is bounded by the number of variables in G. For the latter
claim we need only check that (i) every variable added to V ′ is clearly reachable,
by an easy induction over the number of iterations of the repeat loop, and (ii) if a
variable A is reachable, it will be added to V ′; a formal proof would be by induction
over the number of steps in a derivation resulting in a word containing A. ///

We can eliminate rules involving non-reachable variables without changing the
language.

Algorithm 18: Eliminate Unreachable
Input: a CFG G = (Σ,V,S,P)
Output: CFG G′ with L(G′) = L(G) and no unreachable variables in G′

let V ′ to be the result of ComputeReachable on G;
set P′ to be those rules of P involving only symbols from V ′∪Σ ;
return G′ = (V ′,Σ,S,P′)

Proof of Correctness. To argue the correctness of this algorithm we need to

• argue that it terminates on all inputs, and

212

19 REFACTORING CONTEXT-FREE GRAMMARS

• argue that when it terminates with the output grammar G′ we have
L(G′) = L(G).

The former claim, termination, is immediate from the fact that ComputeReachable
halts on all inputs. For the latter argument, we want to show that L(G′) = L(G).
The fact that L(G′) ⊆ L(G) follows immediately from the fact that the rules of G′

re a subset of the rules of G. To show that L(G)⊆ L(G′) it suffices to show that no
derivation in G will ever use a rule that we excluded from G′. This is to say that
no derivation in G ever uses a rule involving an unreachable symbol. But this is
clear. ///

19.1.2 Computing Generating Variables

Computing the generating variables is also easy; we just have to reason backwards.

Algorithm 19: Compute Generating
Input: a CFG G = (Σ,V,S,P)
Output: the set of generating variables of G
initialize: V ′ = /0;
repeat

if there is a rule A→ α with each symbol in α either in Σ or in V ′ then
add A to V ′

until no change in V ′;
return V ′

Proof of Correctness. The algorithm terminates on all inputs because the number
of steps of the repeat loop is bounded by the number of variables in G. The
argument that V ′ meets its specification is left to you. ///

We can eliminate rules involving non-generating variables without changing the
language.

Algorithm 20: Eliminate Non-Generating
Input: a CFG G = (Σ,V,S,P)
Output: CFG G′ with L(G′) = L(G) and no non-generating variables in G′

let V ′ to be the result of ComputeGenerating on G;
set P′ to be those rules of P involving only symbols from V ′∪Σ ;
return G′ = (Σ,V ′,S,P′)

Proof of Correcteness. similar to the argument for Eliminate Unreachable ///

213

19 REFACTORING CONTEXT-FREE GRAMMARS

19.1.3 Putting Things Together

If we want to eliminate all useless variables from a grammar, we first eliminate the
non-generating variables, and then eliminate the non-reachable variables.

Algorithm 21: Eliminate Useless Rules
Input: a CFG G = (Σ,V ′S,P) with L(G) 6= /0

Output: a grammar G′′ equivalent to G with no useless variables

let G′ be the result of Eliminate Non-Generating on G;
let G′′ be the result of Eliminate Non-Reachable on G′;
return G′′

Proof of Correctness. The algorithm terminates on all inputs because each of
Eliminate Non-Generating and EliminateUnreachable are known to terminate. The
fact that the output G′′ satisfies L(G′′) = L(G) follows from the fact that each of
EliminateNonGenerating and Eliminate Unreachable are known to preserve the
languages of their input grammar. To see that G′′ has no useless variables we
must show that it has no unreachable variables and that it has no non-generating
variables. The first fact follows from the fact that Eliminate Unreachable is known
to return a grammar with no unreachable variables. The second fact follows
from the fact that Eliminate Non-Generating is known to return a grammar with
no non-generating variables and the fact that Eliminate Unreachable will not
introduce any non-generating variables (when it is given the grammar Eliminate
Non-Generating(G)). ///

In case the above argument seems fussier than it needs to be, have a look at
Exercise 153 to see see that things can be more subtle than they appear at first
glance.

19.2 Example. Let G be the grammar

S → AB | aA

A → bA | c | D

C → cB | c

The generating variables are C, A, and S. Eliminating the rules involving the non-

214

19 REFACTORING CONTEXT-FREE GRAMMARS

generating symbols B and D we get to

S → aA

A → bA | c

C → cB | c

The reachable variables of this grammar are S and A. Eliminating the rules
involving the non-reachable C yields

S → aA

A → bA | c

This grammar generates the same language as the original G, and has no useless
rules.

19.2 Eliminating Chain Rules

19.3 Definition. A chain rule in a grammar is one of the form A→ B, where B is a
variable.

Our goal is to prove the following theorem.

19.4 Theorem. For every CFG G there exists a CFG G′ such that

1. L(G′) = L(G)

2. G′ has no chain rules

Furthermore, there exists an algorithm to compute G’ from G.

Note that we can’t just delete chain rules of course: we must compensate for
removing them. The strategy:

1. Build an auxiliary grammar G∗;

2. Define G′ as G∗ with all chain rules deleted

The key idea of the algorithm is contained in the following lemma. It expresses the
fact that a certain transformation of a grammar leaves the language of the grammar
unchanged.

215

19 REFACTORING CONTEXT-FREE GRAMMARS

19.5 Lemma. Suppose grammar G has the rule A→ B and a rule B→ β. Then
if we build a new grammar by adding the rule A → β, the resulting grammar
generates exactly the same language as did G.

Proof. This is easy: the added rule can be simulated by the original rules. ///

That lemma seems to take us in the wrong direction: it adds rules rather than
removing the ones we don’t want. But the trick is that after all such rules have
been added, we can then just delete the bad rules. Here is this idea expressed as an
algorithm.

Algorithm 22: Eliminate Chain Rules
Input: a CFG G = (Σ,V,P,S)
Output: a CFG G′ such that L(G′) = L(G) and G′ has no chain rules
initialize: set P∗ to be P
repeat

if P∗ has a chain rule A→ B and a rule B→ β then add A→ β to P∗

until no change in P∗;
define P′ to be P∗ with all chain rules removed ;
return G′ = (Σ,V,P′,S);

Proof of correctness of EliminateChain. We need to prove three things: (i) the
algorithm always terminates; (ii) the output G′ has no chain rules, and (iii) L(G′) =
L(G).

Termination: notice that if a new rule is added to the grammar, the left-hand side of
that rule is a variable in the original grammar, and the right-hand side of that rule
must be a rule in the original grammar. There are only finitely many such potential
new rules, in fact no more than |V ||P| such. So there are only |V ||P| rules that it is
possible to be added. This establishes an upper bound on the number of times the
repeat loop can be executed.

The fact that the output G′ has no chain rules is obvious from the algorithm
statement.

To prove L(G′) = L(G): we first prove L(G∗) = L(G), and then prove L(G′) =
L(G∗).

To prove L(G∗) = L(G): Since we start with P∗ = P and we never delete rules, it
is obvious that L(G) ⊆ L(G∗). To prove L(G∗) ⊆ L(G) it suffices to prove that at
each stage of the construction of the rules P∗ the grammar at that stage generates
no new Σ strings. But this is immediate from Lemma 19.5.

216

19 REFACTORING CONTEXT-FREE GRAMMARS

Now to prove L(G′) = L(G∗): Since the rules of G′ are a subset of those of G∗ it is
obvious that L(G′)⊆ L(G∗). To prove L(G∗)⊆ L(G′). It suffices to prove that for
any string w ∈ L(G∗) there is a derivation of w in G∗ that does not use chain-rules.

For this it suffices to show the following claim:

If S ∗
=⇒ w is the shortest leftmost derivation of w in G∗ then no chain

rule of G∗ is used.

Proof of claim: For sake of contradiction suppose that somewhere a chain-rule was
used

S ∗
=⇒ xBα⇒ xCα

∗
=⇒ w

we must have next rewritten C via some rule C→ β

S ∗
=⇒ xBα⇒ xCα⇒ xβα

∗
=⇒ w

but then if B→C in P∗ and also C→ β ∈ P∗ we must have B→ β ∈ P∗ [this is just
from the way P∗ was constructed]. So in fact there is a shorter derivation:

S ∗
=⇒ xBα⇒ xβα

∗
=⇒ w.

This contradicts our assumption that the derivation we started with was shortest.
So this completes the proof that grammar G′ performs as advertised. ///

19.3 Eliminating Erasing Rules

19.6 Definition. An erasing rule in a grammar is one of the form A→ λ.

Some authors call erasing rule “λ-rules.” But this is potentially confusing because
it suggests that such rules have something to do with λ-transitions in automata,
which is not the case. 11

Erasing rules are, intuitively, of little use, since they don’t contribute to the rule of
a non-λ output string. And indeed we will in this section show how to eliminate
them.

Our goal is to prove the following theorem.

19.7 Theorem. For every CFG G there exists a CFG G′ such that

1. L(G′) = L(G)−{λ}
11In fact, it is chain rules that are closely related to λ-transitions in automata! See Section 19.6

217

19 REFACTORING CONTEXT-FREE GRAMMARS

2. G′ has no erasing rules.

Furthermore, there exists an algorithm to compute G’ from G.

That “L(G′) = L(G) − {λ}” business seems weird. Why can’t we just say
“L(G′) = L(G)”? The reason is that a grammar G′ with no erasing rules
can never generate λ; so if the original grammar G did generate λ, we can’t
ask for L(G′) = L(G). The best we can hope for is what we wrote, namely
L(G′) = L(G)−{λ}.

Note that we can’t just delete erasing rules of course: we must compensate for
removing them (by now this is a familiar pattern to you, right?).

19.8 Example.

S→ AB

A→ a

B→ λ

Here L(G) = {a}. But if we delete the erasing rule B→ λ, then L(G) = /0.

So we have to be a little more careful. The key idea in getting rid of individual
rules that generate λ is to enlarge our perspective and think about sequences of rule
that generate λ. We do that now.

19.9 Definition (Nullable Variables). A variable A is nullable in a grammar G if
there is a derivation A =⇒∗ λ in G.

Note that this captures a more general concept than erasing rules. For example, if
our grammar had rules A → BC, B → λ and C → λ then A would be nullable
even though it is not the direct subject of any erasing rules.

The strategy for eliminating erasing rules is :

1. Build an auxiliary grammar with extra rules designed to compensate for not
having erasing rules. This will involve working with nullable variables.

2. Then delete erasing rules from this augmented grammar.

For instance, in the little grammar of Example 19.8, we would first add the new
rule S→ A, reflecting the fact that B is nullable, and then remove the rule B→ λ.
In general grammars things are more complex, but this is the basic idea.

218

19 REFACTORING CONTEXT-FREE GRAMMARS

Here is an algorithm to compute the set of all nullable variables in a grammar.

Algorithm 23: Compute Nullable Variables
Input: a CFG G
Output: the set of nullable variables of G

initialize Nullable to be {A | A→ λ is a rule };
repeat

if there is a rule A→ α such that each element of α is in Nullable then
add A to Nullable

until no change in Nullable;
return Nullable

Proof of correctness. Similar to the proofs of correctness of Algorithm 19 Left as
an exercise. ///

Now, back to eliminating erasing rules. The key idea of the algorithm is contained
in the following lemma. It expresses the fact that certain transformations of a
grammar leave the language of the grammar unchanged.

19.10 Lemma. Suppose grammar G has a rule A→ αBβ (with α,β ∈ (V ∪Σ)∗),
and suppose that B is nullable. Then if we build a new grammar by adding the rule
A→ αβ, the resulting grammar generates exactly the same language as did G.

Proof. This is easy: the added rule can be simulated by the original rules. ///

It will useful to isolate the key step in the algorithm as a definition all its own:

19.11 Definition. Let G = (Σ,V,P,S). Let P∗ be the smallest set of rules such that

1. every rule of P is in P∗, and

2. if A→ αBβ is in P∗ (with α,β ∈ (V ∪Σ)∗) and B is nullable in G, then
A→ αβ is in P∗.

Be careful to note that Definition 19.11 can require adding several “variations” for
a given rule, as the next example shows.

219

19 REFACTORING CONTEXT-FREE GRAMMARS

19.12 Example. Suppose for example that our grammar had B and C be nullable.
Suppose G had the rule A→ aBcCB. Then we would end up adding seven new rules

to P∗:

A→ acCB

A→ aBcB

A→ aBcC

A→ acB

A→ aBC

A→ acC

A→ ac

one new rule for each non-empty subset of the occurrences of nullable variables.

Here at last is the algorithm for eliminating erasing rules.

Algorithm 24: Eliminate Erasing Rules
Input: a CFG G = (Σ,V,P,S)
Output: a CFG G′ = (Σ,V,Pnew,S) such that L(G′) = L(G)−{λ} and G′ has

no λ-rules

compute the nullable variables of G;
define G∗ = (Σ,V,P∗,S) where P∗ is defined as in Definition 19.11
define G′ = (Σ,V,P′,S) where P′ is P∗ with all erasing rules removed
return G′

To prove that Algorithm 24 is correct we identify a few lemmas.

19.13 Lemma. Let G = (Σ,V,P,S). Let P∗ be defined as in Definition 19.11. Then
if we set G∗ = (Σ,V,P∗,S), we have L(G∗) = L(G).

Proof. This is an easy consequence of Lemma 19.10. ///

19.14 Lemma. Let G = (V,Σ,P,S). Let P∗ be defined as in Definition 19.11, and
set G∗ = (Σ,V,P∗,S).

Then for w 6= λ, if S ∗
=⇒ w then there is a derivation in which no λ-rule of G∗ is

used.

Proof. It will be convenient to actually prove a more general statement. Namely:

(**) For any x∈Σ∗ and δ∈ (V ∪Σ)∗, if S ∗
=⇒ xδ is the shortest leftmost

derivation of xδ in G∗, no λ-rule of G∗ is used.

220

19 REFACTORING CONTEXT-FREE GRAMMARS

Note that our lemma follows from this statement by taking x = w and δ to be λ.

(i) for sake of contradiction suppose that somewhere a λ-rule was used

S ∗
=⇒ xBδ⇒ xδ

This occurrence of B originated by a derivation step using a rule A→ αBβ

S ∗
=⇒ x′Aθ⇒ x′αBβθ≡ x′αBδ

∗
=⇒ xBδ⇒ xδ

But then A→ αβ is in P∗ by the way we built P∗. So here is a shorter derivation of
xδ:

S ∗
=⇒ x′Aθ⇒ x′αβθ≡ x′αδ

∗
=⇒ xδ

This contradicts our assumption that the derivation we started with was shortest.

///

19.15 Theorem (Correctness of Eliminate Erasing). Algorithm 24 computes,
given an arbitrary CFG G, a grammar G′ such that G′ has no λ-rules, and
L(G′) = L(G)−{λ}.

Proof. We need to prove three things: (i) the algorithm always terminates; (ii) the
output G′ has no λ-rules, and (iii) L(G′) = L(G)−{λ}.
Termination: notice that if a new rule is added to the grammar, the left-hand side of
that rule is a variable in the original grammar, and the right-hand side of that rule
must be a substring of the right-hand side of some rule in the original grammar.
There are only finitely, many such substrings, let us say there are k of them. So
there are only finitely many rules that it is possible to be added, no more than k|V |.
This establishes an upper bound on the number of times the repeat loop can be
executed.

The fact that the output G′ has no λ-rules other than S→ λ is obvious from the
algorithm statement.

To prove L(G′) = L(G): we first prove L(G∗) = L(G), and then prove L(G′) =
L(G∗)−{λ}.
The fact that L(G∗) = L(G) is Lemma 19.13.

Now to prove L(G′) = L(G∗): Since the rules of G′ are a subset of those
of G∗, it is obvious that L(G′)− {λ} ⊆ L(G∗). So it remains to prove that
L(G∗) ⊆ L(G′)− {λ}. For this it suffices to prove that for any non-λ string
w ∈ L(G∗) there is a derivation of w in G∗ that does not use λ-rules. This follows
from Lemma 19.14

This completes the proof that grammar G′ performs as advertised. ///

221

19 REFACTORING CONTEXT-FREE GRAMMARS

19.3.1 Putting Things Together

If we want to eliminate all erasing and chain rules from a grammar, we first
eliminate the erasing rules, and then eliminate the chain rules.

Algorithm 25: Eliminate Chain And Erasing Rules
Input: a CFG G = (Σ,V,P,S)
Output: a CFG G′ such that L(G′) = L(G)−{λ} and G′ has no λ-rules and

no chain rules

let G′ be the result of Eliminate Erasing on G;
let G′′ be the result of Eliminate Chain on G′;
return G′′

19.16 Theorem (Correctness of Eliminate Chain And Erasing Rules). Algorithm 25
computes, from grammar G, a grammar G′ such that L(G′) = L(G)−{λ}, G′ has
no chain rules, and G′ has no erasing rules.

Once again, we have to be careful what order to do things in. See Exercise 154.

Summarizing, we have proved the following.

19.17 Theorem. Let G be a context-free grammar. There is a context-free grammar
G′ such that

• L(G′) = L(G), and

• G has no chain rules or λ-rules, with the possible exception of a rule S→ λ

where S is the start symbol of G′.

Furthermore, there is an algorithm which given G will return the corresponding
G′.

19.18 Example. An exercise from [Sud97]. Let G be the following grammar.

S→ A | B | C

A→ aa | B |
B→ bb | C

C→ cc | A

222

19 REFACTORING CONTEXT-FREE GRAMMARS

There are no erasing rules in G; if we eliminate chain rules we obtain

S→ aa | bb | cc

A→ aa | bb | cc

B→ aa | bb | cc

C→ aa | bb | cc

Obviously A, B, and C are not reachable, so a grammar equivalent to G is given by
just the S-rules.

19.19 Example. Let G be the following grammar.

S→ aBb | aES

B→ PE | aBb | BB

P→ c | E

E→ λ | BE | e

The nullable variables are E, P, and B. If we eliminate erasing rules from G we get

S→ aBb | ab | aES | aS

B→ PE | P | E | aBb | BB | B | ab

P→ c | E

E→ B | e | E

It should be noted that above we have not bothered to remove rules such as B→ B
which our algorithm adds but which clearly are not necessary; these will go away
when we remove chain rules next.

Now we want eliminate chain rules. When add all the rules first required by our
Algorithm, we get to:

S→ aBb | ab | aES | aS

B→ PE | P | E | aBb | BB | B | ab | c | E

P→ c | e | B | E

E→ PE | P | B | e | P | E | aBb | BB | ab | c

If we then remove chain rules we arrive at

S→ aBb | ab | aES | aS

B→ PE | aBb | BB | ab | c | e

P→ c | e

E→ PE | e | aBb | BB | ab | c

223

19 REFACTORING CONTEXT-FREE GRAMMARS

19.4 An Upper Bound on Derivation Lengths

There is a significant virtue in having no chain or erasing rules: we get an easy
upper bound on the length of derivations in the grammar. This means that we
have a very simple algorithm for the problem of deciding whether a given word is
derivable. The simple algorithm isn’t efficient enough to be useful in practice, but
it is the precursor of tractable algorithms.

19.20 Theorem. Suppose G is a grammar with no chain rules nor erasing rules.
Let x be in L(G). Then every G-derivation of w has no more than 2|x|−1 steps.

Proof. If S ∗
=⇒ α1

∗
=⇒ . . .

∗
=⇒ αk = x is a derivation of x then for each step from

αi to αi+1 at least one of the following statements is true: (i) the length of αi+1
is greater then the length of αi or (ii) the number of terminals in αi+1 is greater
then the number of terminals in αi. There can be at most (|x|−1) steps of the first
type, since the length of the string (of terminals and variables) being derived never
decreases, and this length is 1 at the start and |x| at the end. There can be at most |x|
steps of the second type, since the number of terminals in the string (of terminals
and variables) being derived never decreases, and this length is 0 at the start and is
|x| at the end. ///

19.5 Chomsky Normal Form

Chomsky Normal Form is useful theoretically, and as a prelude to the Cocke-
Kasami-Younger algorithm we will see in Section 21.

19.21 Definition. A CFG G is in Chomsky Normal Form if every rule is of one of
the forms A→ A1A2 or A→ a. (We allow A1 and A2 to be the same.)

19.22 Theorem. For every CFG G there exists a CFG GC such that

1. L(GC) = L(G)−{λ}

2. GC is in Chomsky Normal form

Furthermore, there exists an algorithm to compute G’ from G.

Proof. What are the obstacles to a grammar being in Chomsky Normal Form?

1. There could be rules whose right-hand side has length 0.

224

19 REFACTORING CONTEXT-FREE GRAMMARS

2. There could be rules whose right-hand side has length 1, and that right-hand
side is not a terminal.

3. There could be rules whose right-hand side has length 2 but isn’t a pair of
variables.

4. There could be rules whose right-hand side has length greater than 2.

By Theorem 19.7 we may build a G′ such that L(G′) = L(G)−{λ} and G′ has no
chain rules or λ-rules. This takes care of the first two problems.

To take care of the third problem: for each terminal symbol a,

• create a new variable Xa;

• everywhere a occurs in a right-hand of length greater than 1, replace it by
Xa;

• add the rule Xa→ a

This clearly doesn’t change the language generated. And the result is a grammar
that will fail to be in Chomsky Normal Form only to the extent that it has rules that
look like

A→ B1B2 . . .Bn

for n > 2. To take care of the right-hand sides of length greater than two, proceed
as suggested by the following example. if there is a rule

A→ BCDE

replace this by the rules

A→ BB1

B1→CC1

C1→ DE

It should be clear that this results in an equivalent Chomsky Normal Form
grammar. ///

225

19 REFACTORING CONTEXT-FREE GRAMMARS

19.23 Example. This little grammar obviously generates {aibi | i≥ 1} Note that
we’ve left out λ here.

S → ASb | ab

An equivalent Chomsky Normal Form grammar is

S → AT |AB

T → XB

X → AT | AB

A → a

B → b

19.6 NFAλs Revisited

As a final remark, we connect the notion chain rules in CFGs with λ-transitions
in automata. Recall that an NFAλ is a finite automaton that, in addition to
transitioning from one state to another while reading an input character, has the
capacity to transition from one state to another without consuming any input at
all. We denote such transitions, naturally, as p→ q, and call them λ-transitions, or
sometimes, “silent” transitions.

These machines are convenient sometimes, but we proved earlier that λ-transitions
can be eliminated. The point we want to make here is that the technique we used
back in Section 9 are exactly the same thing as eliminating chain rules from a
grammar.

Specifically, suppose M is an NFAλ. Let GM be the regular CFG you get in the
standard way from M, as in Section 16.2. Then eliminating λ-transitions in M
and eliminating chain rules from GM are exactly the same algorithm just expressed
in different notation. The context-free grammar setting is more general, since not
every CFG corresponds to an NFAλ, but algorithm for removing λ-transitions from
an NFAλ is just the special case of Algorithm 22 when the input grammar is regular.

We just observe that whenever we add productions according the algorithm, the
new grammar is still a regular grammar (plus some chain rules) when we delete the
chain rules at the last step, we have a regular grammar.

19.24 Check Your Reading. Make sure this last remark is clear to you, by
drawing some pictures of NFAλs and then writing down the corresponding regular
grammars with chain rules; then do some examples the other way around.

226

19 REFACTORING CONTEXT-FREE GRAMMARS

By the way, it is superficially tempting to think that erasing rules in a grammar
should have something to do with λ-transitions in an automaton. Resist that
temptation! It is chain rules, not erasing rules, that are related to λ-transitions.

227

19 REFACTORING CONTEXT-FREE GRAMMARS

19.7 Exercises

Exercise 152. Find a grammar generating the same language as the one below,
with no useless rules.

S → dS | A | C

A → aA | a

B → bB | b

C → cC

Exercise 153. Suppose we first eliminate non-reachable variables from a grammar
and then eliminate non-generating variables, Show by means of an example that
this does not always yield a grammar with no useless rules.

Exercise 154. Suppose we first eliminated the chain rules from a grammar and
then eliminated the erasing rules. Show by means of an example that this does not
always yield a grammar with no chain or erasing rules.

Exercise 155. For each grammar give an equivalent grammar with no λ- or chain
rules.

G1 :

S→ aSbb | ST | c

T → bTaa | S | λ

G2 :

S→ aA | bB | A

A→ aaA | B

B→ cc | A

G3 :

S→ aBbB

B→ P | bBb

P→ c | E

E→ e | λ

Exercise 156. For each grammar G give a grammar generating L(G) with no
useless rules. Then eliminate chain and erasing rules.

228

19 REFACTORING CONTEXT-FREE GRAMMARS

G1 :

S → AB | CA

A → a

B → BC | AB

C → aB | b

G2 :

S → ASB | λ

A → aAS | a

B → SbS | A | bb

Exercise 157. For each k, define the following grammar.

The set of variables is {A1, . . . ,Ak} and the set of terminals is {a1, . . . ,ak}; the start
variable is A1. The rules are:

Ai→ Ai+1 | aiAi+1 for 1≤ i < k

Ak→ ak

What is the size of the grammar you get when you eliminate chain rules? (Big-Oh
notation is fine.)

229

19 REFACTORING CONTEXT-FREE GRAMMARS

Exercise 158. Build Chomsky normal form grammars equivalent to the grammars
below.

G1 :

S→ aSa | bSb | a | b

G2 :

S→ XY

X → aXbb | abb

Y → cY | c

G3 :

S→ aSa | aBa

B→ Bb | b

G4 :

S→ ASc | AScc | ABc | ABcc

A→ Aa | a
B→ bB | b

G5 :

S → A | aAbB | ABC | a

A → aA | a

B → bBcC | b

C → abc

Exercise 159. Building Chomsky Normal Form (from [Koz97]) Give grammars
in Chomsky Normal Form for each of the following languages.

1. {anb2nck | k,n≥ 1}

230

19 REFACTORING CONTEXT-FREE GRAMMARS

2. {anbkan | k,n≥ 1}

3. {akbmcn | k,m,n≥ 1,2k ≥ n}

Exercise 160. Suppose G is a grammar in Chomsky Normal Form. Let x be in
L(G). Then every G-derivation of w has exactly 2|x|−1 steps.

231

20 PUSHDOWN AUTOMATA AND PARSING

20 Pushdown Automata and Parsing

We have a “machine model” for regular languages, namely finite automata. That
is, when M is a DFA accepting regular language L, M accepts strings x as input
and computes a decision as to whether x ∈ L. In this section we answer the
question, “What is the corresponding machine model for membership in context-
free languages?”

Specifically, we will address the following decision problem

CFG Membership

INPUT: a context-free grammar G and a string x

QUESTION: is x ∈ L(G)?

Now, this membership problem is not actually the most interesting problem about
languages, in practice. The membership problem is a simplified version of the
parsing problem: given a string x, decide whether x ∈ L and if so, compute a parse
tree for x.

But it turns out that it is not difficult at all to tweak what we do here to generate
a parse tree. This will be clear once we have done our work. So we will consider
what are doing in this chapter to really be parsing.

In fact the parsing problem is in turn a simplified version of what we typically
really want, namely: given a string x, decide whether x ∈ L and if so, compute a
parse tree for x, together with some semantic actions (such as code generation in
a compiler), and if x 6∈ L return some useful error message to the user about why
x 6∈ L.

It is not so straightforward to add (certain) semantic actions, or to generate good
error messages; that is more advanced work. But what we do here is the essential
first step.

20.1 Warm Up: DFAs Are Parsers for Regular Grammars

Suppose the CFG G we start with is regular (Section 16.2). For instance, take G to
be

S→ aP | bS

P→ aS | bP | λ

Let M be a DFA for L(G). For instance take M to be

232

20 PUSHDOWN AUTOMATA AND PARSING

sstart p

a
b

a

b

Then we can think of the states of M as being procedures in a standard
programming language:

• procedure S reads a character; if the char is an a calls procedure P, else if the
character is b is calls itself; else if the char is end-of-file the program rejects.

• procedure S reads a character, and if the char is an a calls procedure S, else
if the character is b is calls itself; else if the char is end-of-file the program
accepts.

It’s obvious that this a perfectly general way to think about any DFA.

If instead we have an NFA for our language, things are slightly more subtle. The
non-determinism in NFAs mean that to simulate them (naively) by programs we
have to use backtracking. This is why it is so nice that NFAs can be compiled into
DFAs.

So. What goes wrong with the story above if the grammar we start with is not
regular? The crucial thing about the story above is that each of our procedures, no
how complex the DFA or NFA, reads characters, then simply branches to another
procedure in a tail recursive way. What “tail recursive” means is that the procedure
call is just a simple goto, and the procedure being called does not have to return
anything to the calling procedure.12

Even a very simple example shows us what the issue is in the non-regular case.
Look at this grammar

S→ aAa | λ

A→ bSb

If we think of S as being a procedure in a standard program, it does this (the story
for procedure A is similar).

12The word “recursive” in the phrase “tail recursive” is an unfortunate accident of history; people
use this expression to refer to any procedure-calling situation, recursive or not, where the last thing
that happens is a simple jump. . .

233

20 PUSHDOWN AUTOMATA AND PARSING

1. reads a character (or returns successfully on end-of-file)

2. makes a call to procedure A

3. when that call returns, reads another character and makes sure that it is the
same as the char read before the call

It is precisely that business of making a procedure call, expecting that call to return,
and doing some subsequent work, that is the essence of the difference between
regular and context-free language processing.

In particular, the difference between finite automata, our machine model for regular
languages, and pushdown automata, the machine model we develop now, is that
pushdown automata have a stack memory. This stack memory is a direct analog of
the run-time stack that you know about from studying how programs are executed
on a standard computer architecture.

20.2 Pushdown Automata

We start with an informal description. A pushdown automata (PDA) is a machine
that scans its input from left to right, maintains a notion of current state, and pushes
and pops symbols from a stack memory.

In contrast to DFAs and NFAs we do not define acceptance in terms of “accepting
states.” It turns out to be more convenient to say that a PDA accepts x if there is a
run that consumes x and leaves the stack empty.13 Careful details are below.

Moves

There are two types of moves possible.

1. Depending on the current state p, the current input symbol a, and the current
stack top B, the machine can advance to a next state q, scan past the input
symbol, and replace the current stack top by a string β of stack-alphabet
symbols.

13 Actually, there are two notions of acceptance typically considered for PDAs: acceptance by final
state and acceptance by empty stack. They are equivalent in the sense that a language is accepted by
some PDA under final-state acceptance if and only if that language is accepted by some (typically
different) PDA under empty-stack acceptance. In these notes we wil only consider PDAs that accept
by empty stack.

234

20 PUSHDOWN AUTOMATA AND PARSING

This is denoted less verbosely by writing the pair comprising the relevant
stuff before the move, namely, (p,a,B) and the relevant stuff after the move,
namely, (q,β). That is, the move is captured by the notation

((p,a,B), (q,β))

2. Depending on the current state p and the current stack top B, the machine
can advance to a next state q and replace the current stack top by a string β

of stack-alphabet symbols without consuming an input symbol.

We denote such a move by the notation

((p,B), (q,β))

A PDA is, in general, non-deterministic, meaning that more than one move — or
indeed no move — might be applicable in a given configuration. So the δ relation
on a PDA is akin to the δ relation of an NFA or an NFAλ.

Note that speak of “replacing” the top stack symbol B by a string β. A conventional
“pop” means, then, replacing B by the empty string. A conventional “push” mean
replacing B by a string β that has B as its first element. And strictly speaking this
is really a sequence of pushes, if b has length greater than 2, this is a convenience.
Finally note that although we allow the PDA to make moves without scanning past
input symbols, we have not allowed our PDA to move if the stack is empty.

To complete the formal definition of a PDA we must designate a start state s of
the machine and some accepting states. It is also convenient to postulate a special
initial stack symbol ⊥. Putting this all together we have the following

20.1 Definition. A pushdown automaton M is a tuple (Σ,Q,s,Γ,⊥,δ), where

• Σ is a finite input alphabet,

• Q is a finite set of states,

• s ∈ Q is the start state

• Γ is a finite stack alphabet,

• ⊥ ∈ Γ−Σ is the initial stack symbol.

• δ is a move relation a set of tuples of the form

((p,a,B), (q,β)) or

((p,B), (q,β))

where p,q ∈ Q, Z ∈ Γ, β ∈ Γ∗

235

20 PUSHDOWN AUTOMATA AND PARSING

We allow that the terminal alphabet Σ can overlap with the stack alphabet Γ, except
for the constraint that ⊥ cannot be a terminal symbol (which is why we wrote
⊥ ∈ Γ−Σ).

Pictures

Just as with DFAs and NFAs, it can be helpful to draw pictures of PDAs. We just
label the arcs with (i) the input symbol being read, if any, and (ii) the action on the
stack. See the example, next.

20.2 Example. Here is the raw definition of a PDA, P, designed to accept the
language {anbn | n ≥ 1}. The intuitive idea is that P reads as, storing them on the
stack until it starts to see bs; while it reads bs it pops as off the stack; if the input
string is exhausted precisely when the stack has no more as, we accept.

• Σ is {a,b}

• Q is {s,q, f}, with s being the start state

• Γ is {a,b,⊥}, with ⊥ being the start state

• δ is the following set of pairs

((s,a,⊥),(s,a⊥))
((s,a,a),(s,aa))

((s,b,a),(q,λ))

((q,b,a),(q,λ))

((q,⊥),(f ,λ))

Here is a picture for P. This is nothing more than a way to show the δ relation
above in a graphical way.

sstart q f

a ⊥/a⊥
a a/aa

b a / λ

b a / λ

⊥ / λ

236

20 PUSHDOWN AUTOMATA AND PARSING

Here (in English) is how P processes strings. Starting in state s, it reads as and
pushes them on the stack. (If the input is empty, P blocks at state s.) Once we see
a b in the input, if there is an a on the stack we pop it and move to state q. (If the
very first input symbol is a b, we block at state s.)

Once in state q we read bs and pop as from the stack. If there are more as on the
stack than there are bs to be read, P eventually blocks at state q. If we run out of as
on the stack, then, when ⊥ is at the top of the stack, P can move to state f without
reading a symbol. If there are fewer as on the stack than there are bs to be read,
then we eventually get to the point where⊥ is the top of the stack, and so P can take
the transition to state f . The stack will be empty, but the input string will not have
been read completely, so we do not have an accepting run. Finally, if there are the
same number of as on the stack as there are bs to be read, then we eventually get to
the point where ⊥ is the top of the stack, and the input string has been completely
read. P can take the transition to state f , and this will be an accepting run since the
input string has been completely read and the stack is empty.

Such an example is helpful in building intuition, but PDAs are tricky enough that
we need to be perfectly rigorous in defining what are computation is and what it
means to accept a string. We do that now.

Computation

The action of M is described in terms of transitions from one such machine
configuration to another.

To describe the configuration of a PDA at a particular instant of time we must
specify the current state, the portion of the input string remaining to be processed,
and the current sequence of symbols comprising the stack. Formally, then:

20.3 Definition (PDA Configuration). Let M be a PDA. A configuration of M is a
triple

[p, w, γ] with p ∈ Q, w ∈ Σ
∗, γ ∈ Γ

∗.

If w is not empty, think of the machine as “looking at” the first letter of w; if γ is
not empty, think of the left-most symbol of γ as being the top of the stack.

Now, a computation is precisely this: a sequence of configurations generated
according to the δ relation.

237

20 PUSHDOWN AUTOMATA AND PARSING

20.4 Definition (PDA Computation). The one-step transition relation ` is defined
as follows. If

((p,a,B), (q,β))

is a move in δ then for any x and any γ

[p, ax, Bγ] ` [q, x, βγ].

If
((p,B), (q,β))

is a move in δ then for any x and any γ

[p, x, Bγ] ` [q, x, βγ].

We deine the relation
∗
` to be the reflexive transitive closure of `. This means that

C
∗
` D if D follows from C by a finite number (zero or more) steps of `.

Note that from a given machine configuration C there may be more than one legal
move, meaning that there may be more then one configuration C′ with C `C′. By
the same token there may no transitions available, that is no C′ with C `C′. Note in
particular that if the stack is empty in a configuration then there are no transitions
from C.

Don’t confuse the transition relation ` with the move relation δ. It is the transition
relation which describes the action of the machine. The move relation is just syntax
for defining the moves (which exist just in order for us to define the transition

relation). A good metaphor is: δ is the program for the machine, while
∗
` is the set

of computations.

Acceptance

We said informally that a string x is accepted by the PDA M if there is a
computation of M on x which exhausts all of x and terminates in an accepting
state. Formally we have the following definition.

20.5 Definition (PDA Acceptance). Let M be a PDA with start state s, initial stack

symbol⊥, and transition relation
∗
`. A string x is accepted by M if for some state f

[s, x, ⊥]
∗
` [f , λ, λ].

We denote the set of strings accepted by M as L(M).

238

20 PUSHDOWN AUTOMATA AND PARSING

If we go back to the intuition earlier about PDAs as programs, we can think of
the input string as generating tasks to be done, and the stack as being a place to
keep track of what tasks are waiting to be done. Under this intuition, acceptance
by empty stack corresponds to say that we accept if we have read the entire input
string and have completed all the tasks on the stack.

20.6 Example (continued). We continue Example 20.2 by showing some
computations.

On input aab:

[s, aab, ⊥] ` [s, ab, a⊥]

` [s, b, aa⊥]

` [q, λ, a⊥]

and now the machine blocks, since there are no δ-moves defined out of q when the
stack top is a. Note that this is not a run on aab, since runs have to consume their
entire input. We didn’t have any non-deterministic choices in this computation, so
it is not hard to see that there can be no accepting run on aab. That is, aab is not in
the language accepting by P.

On input abb:

[s, abb, ⊥] ` [s, bb, a⊥]

` [q, b, ⊥]

` [f , b, λ]

and now the machine blocks, since there are no δ-moves defined out of f at all.
This is also not a run, since runs have to consume their entire input. The fact that
the stack is empty at the end of this computation is irrelevant. We didn’t have any
non-deterministic choices in this computation, so it is not hard to see that there can
be no accepting run on abb. That is, abb is not in the language accepting by P.

On input aab:

[s, aabb, ⊥] ` [s, abb, a⊥]

` [s, bb, aa⊥]

` [q, b, a⊥]

` [q, λ, ⊥]

` [f , λ, λ]

This is a run. It ends with the stack empty, so it is an accepting run. Thus aabb is
in the language accepting by P.

239

20 PUSHDOWN AUTOMATA AND PARSING

20.7 Check Your Reading. Work out some other computations. Don’t read any
further until you do this!

What happens if the empty string λ is the input to PDA? How would you change P
to get a PDA that accepts {anbn | n≥ 0}?
20.8 Example. Here is another example, which shows the power of, and the
need for, non-determinism in PDAs. The following PDA accepts the language
{wwR | w ∈ {a,b}∗}. of even-length palindromes over {a,b}. (Remember that wR

stands for the reverse of string w.) It is similar to the PDA of Example 20.2 in that it
pushes symbols onto the stack during the “pushing phase” of the computation and
pops them off during the “popping phase”, but it is different in two ways. First,
it is happy to see either as or bs in the first phase, it simply checks that symbols
match when it is time to pop. The second difference is the interesting one: unlike
the anbn language there is no explicit way that the input string says, “ok, now it
is time for the my second half.” So our PDA has to guess when to jump from the
pushing phase to the popping phase. That is shown in the diagram below by the
fact that the transitions from s to q dont scan any input and don’t change the stack.

sstart q f
⊥/⊥
a/a
b/b

a ⊥/a⊥
a a/aa
a b/ab

b ⊥/b⊥
b a/ba
b b/bb

a a/λ

b b/λ

⊥ / λ

Let’s look at some computations.

On input abba

[s, abba, ⊥] ` [s, bba, a⊥]

` [s, ba, ba⊥] the guess happens next

` [q, ba, ba⊥]

` [q, a, a⊥]

` [q, λ, ⊥]

` [f , λ, λ]

240

20 PUSHDOWN AUTOMATA AND PARSING

This is a run. It ends with the stack empty, so it is an accepting run. Thus abba is
in the language accepting by P.

Here’s another computation starting with abba, in which the machine guesses
wrong.

[s, abba, ⊥] ` [s, bba, a⊥]

` [s, ba, ba⊥]

` [s, a, bba⊥] ops, waited too long to guess

` [q, a, bba⊥]

and we are stuck now, since state q won’t pop if the current input symbol doesn’t
match the stack top. But just as with NFAs, the fact that there is some accepting
run on string abba is enough to say that the machine accepts abba.

On an input that is not an even-length palindrome, there will be no way for the
machine to accept, since there will be no way for the machine to guess correctly
and have the pushes and pops match up.

20.9 Check Your Reading. Make some other computations on the machine above,
with palindrome inputs and non-palindrome inputs, to be certain you understand
how the machine works.

Exercise 161 asks you to modify this PDA so that it accepts even-length
palindromes and odd-length palindromes.

20.3 Non-Determinism

In general, PDAs can be non-deterministic: from certain configurations there can
be more than one possible transition, or no possible transition. A PDA is said to be
deterministic if, for every state q, input symbol c and stack symbol Z, one of the
following holds, but not both:

• there is exactly one (p,β) such that ((p,c,X),(p,β)) ∈ δ)

• there is exactly one (p,β) such that ((p,X),(p,β)) ∈ δ)

In contrast to the situation with NFAs, non-determinism in PDAs is essential. By
this we mean that there are PDAs N such that there is no deterministic PDA D with
L(D) = L(N).

241

20 PUSHDOWN AUTOMATA AND PARSING

We won’t prove that here. But we have already seen an example: the PDA in
Example 20.8 cannot be converted to a deterministic PDA. In other words, there is
no deterministic PDA D such that L(D) = {wwR | w ∈ {a,b}∗}.

20.4 PDAs and CFGs

Now we connect PDAs and context-free grammars. The examples in the previous
section seemed to require some cleverness: the PDA we built for (for example)
the palindrome language didn’t seem to be derived in any systematic way from the
grammar we have for this language. So it is somewhat amazing that we will be able
to show that for any context-free grammar G at all we can build—systematically—
a PDA M with L(M) = L(G). That is the content of the first part of the theorem
below. It is also true that for every PDA there is a corresponding grammar; that is
the content of the second part of the theorem.

We won’t give a formal proof of the theorem here, but we will give the construction
of the PDA, for the first part, and do some examples.

20.10 Theorem. Context-Free grammars and pushdown automata are equivalent
for defining lanaguges, in the following sense.

1. For every context-free grammar G there is a PDA M such that L(M) = L(G).

Furthermore there is an algorithm for computing M from G.

2. For every PDA M there is a context-free grammar G such that L(G) = L(M).

Furthermore there is an algorithm for computing G from M.

Here is the construction that is the basis for the first part of the theorem. Amazingly,
we can always build the PDA we want with only one state.

20.11 Definition (PDA from a CFG). Let G be (Σ,N,S,P). We construct a PDA
M from G with the following components.

• one state s, which is of course the start state

• input alphabet Σ

• stack alphabet N∪Σ,

• the initial stack symbol is the start symbol S from G

• the move relation δ is as follows:

242

20 PUSHDOWN AUTOMATA AND PARSING

1. for each rule A→ α from P, ((s,A), (s,α)) is a move in δ.

2. for each symbol a ∈ Σ, ((s,a,a), (s,λ)) is a move in δ.

That’s the end of the definition; here is the intuition. If string x is presented to M,
at any point M will be reading a symbol c of x, and the stack will contain a mix of
terminal symbols and variables from G.

While in state q:

• If the top of the stack matches the current input symbol c, that’s good, we
scan past c in the input and pop c off the stack.

• If the top of the stack is a terminal symbol different from the current input
symbol c, that’s bad, this attempted run fails (we block).

• If the top of the stack is some variable X , we guess a G-rule of the form
X → α, and replace X by α on the stack.

Let’s see how this works in an example.

20.12 Example. Let G be the following grammar (for the language {anbn | n≥ 1}):

S→ aSb | ab

The PDA M we build has these four δ moves

((s,a,a), (s,λ))

((s,b,b), (s,λ))

((s,S), (s,aSb))

((s,S), (s,ab))

A picture:

sstart

a a/λ

b b/λ

S/aSb
S/ab

243

20 PUSHDOWN AUTOMATA AND PARSING

Here is a run of M on input aabb.

[s, aabb, S] ` [s, aabb, aSb] (1)

` [s, abb, Sb] (2)

` [s, abb, abb] (3)

` [s, bb, bb] (4)

` [s, b, b] (5)

` [s, λ, λ] (6)

This is an accepting run, since we have processed the entire input string and the
stack is empty. Here is a derivation in the grammar G:

S =⇒ aSb =⇒ aabb

20.13 Check Your Reading. Important! see how the run of M on aabb
corresponds in a natural way to the given derivation in G of aabb. Do this by
labelling each of the transitions above with the number of a move taken by the
PDA.

20.4.1 Perspective

Recall Example 20.2. In that example, we constructed a PDA for the same
language, {anbn | n ≥ 1}, by hand. It looks pretty different from the one we
just constructed. Most notably, the one we built by hand did not have to do any
guessing, as opposed to the one we built following the general Definition 20.11.

The is an example of a standard phenomenon. When we generate things
automatically, using algorithms that have to work for all possible inputs, the results
are typically not as nice as when things are written by hand. For example, code
generated by a compiler won’t be as efficient as hand-crafted assembly languges.
In our current setting, PDAs generated by Definition 20.11 will not take advantage
of human insights about specific grammars, which might, for example, eliminate
non-determinism.

The key virtue of Definition 20.11 is that it shows how to build a PDA for any CFG,
even if it is too complex for a human to understand it intuitively, with a guarantee
that the PDA will be correct.

20.14 Example. Suppose we start with the following grammar

E → E +E | E ∗E | 0 | 1

We get the PDA (Σ,Q,s,Γ,E,δ,), where δ consists of the following moves

244

20 PUSHDOWN AUTOMATA AND PARSING

• ((s,E), (s,E +E))

• ((s,E), (s,E ∗E))

• ((s,E), (s,0))

• ((s,E), (s,1))

• ((s,+,+), (s,λ))

• ((s,∗,∗), (s,λ))

• ((s,0,0), (s,λ))

• ((s,1,1), (s,λ))

Here is the trace of a computation accepting the input string w = 1+0∗1.

[s, 1+0∗1, E] ` [s, 1+0∗1, E +E] (1)

` [s, 1+0∗1, 1+E] (2)

` [s, +0∗1, +E] (3)

` [s, 0∗1, E] (4)

` [s, 0∗1, E ∗E] (5)

` [s, 0∗1, 0∗E] (6)

` [s, ∗1, ∗E] (7)

` [s, 1, E] (8)

` [s, 1, 1] (9)

` [s, λ, λ] (10)

This PDA computation corresponds naturally to the following derivation

E =⇒ E +E =⇒ 1+E =⇒ 1+E ∗E =⇒ 1+0∗E =⇒ 1+0∗1

20.15 Check Your Reading. Label each of the transitions above with the number
of a move taken by the PDA.

Returning to our example, here is the trace of another computation on the same
input string w = 1+ 0 ∗ 1, but this time the PDA computation corresponds to the
following derivation

E =⇒ E ∗E =⇒ E +E ∗E =⇒ 1+E ∗E =⇒ 1+0∗E =⇒ 1+0∗1

245

20 PUSHDOWN AUTOMATA AND PARSING

[s, 1+0∗1, E] ` [s, 1+0∗1, E ∗E] (1)

` [s, 1+0∗1, E +E ∗E] (2)

` [s, 1+0∗1, 1+E ∗E] (3)

` [s, +0∗1, +E ∗E] (4)

` [s, 0∗1, E ∗E] (5)

` [s, 0∗1, 0∗E] (6)

` [s, ∗1, ∗E] (7)

` [s, 1, E] (8)

` [s, 1, 1] (9)

` [s, λ, λ] (10)

20.16 Check Your Reading. Label each of the transitions above with the number
of a move taken by the PDA.

20.5 PDAs and Parsing Algorithms

If G is a CFG and M is a PDA accepting L(G) then, as we described at the
beginning of this section, we can view M as a solution to the membership problem
for G. And we can see M as an abstract representation of a parsing algorithm for
G, if we tweak it just a bit to construct a parse tree during its computation. (This
isn’t hard.)

But to be fair, in the absolutely general case a PDA for a grammar G can
be considered as providing a parsing algorithm only under a pretty liberal
understanding of what a parsing algorithm is! As observed earlier (i) PDAs can
be very non-deterministic, and (ii) there is no a prioi upper bound on the number
of steps taken by an arbitrary PDA on a given input.

In practice what happens is that we do not try to parse arbitrary grammars, but
rather focus on grammars that admit PDAs that are “nice,” i.e., deterministic.
Sometimes we take a given grammar G and concentrate on building another, nicer,
grammar G′ generating the same language. There is a huge amount of research on
this topic, so we will only give a few hints here.

Now, by our work on refactoring grammars we can massage our grammar to have
no λ- or chain-rules, which will in turn give an upper bound on the number of PDA
steps we need to simulate (check this for yourself). But let’s try to do better.

Before reading this section I suggest doing Exercise 162, parts 3 and 4.

246

20 PUSHDOWN AUTOMATA AND PARSING

20.17 Theorem (Greibach Normal Form). Let G be a context-free grammar. There
is a context-free grammar G′ such that

• L(G′) = L(G), and

• each rule of G′ has the form

A → aB1 . . .Bk k ≥ 0

for some terminal a and variables B1, . . .Bk, with the possible exception of a
rule S→ λ where S is the start symbol of G′.

Furthermore, there is an algorithm which given G will return the corresponding
G′.

Proof. Omitted here. ///

Now suppose G is a grammar in Greibach Normal Form and let M be a PDA
constructed from G as in the proof of Theorem 20.10. Recall the moves of the
PDA:

1. For each rule A→ α from P, ((s,λ,A), (s,α)) is a move in δ.

2. For each input symbol a ∈ Σ, ((s,a,a), (s,λ)) is a move in δ.

We can never make two moves in a row of the first type, since after making one
such move the top of the stack will be a terminal symbol (precisely since the
grammar is in Greibach Normal Form). So after making a move of type (i) we
must immediately make a move of type (ii). And if we are not to fail, the symbol
on top of the stack must be equal to the current input symbol. This means that:

If the current input symbol is a and the current stack top is the variable
A, then we must choose a type-(i) move corresponding to a rule of the
form A → aB1 . . .Bk.

At this point it is clear that, for a PDA working with a Greibach Normal Form
grammar, there is no real point to having type-(ii) rules at all. Each type-(i) rule
pushes a terminal onto the stack (as part of the aB1 . . .Bk push) and all the type (ii)
rules do is immediately pop the terminal off. So provided we use the current input
symbol as our guide for which rules to use in the next type-(i) rule we might as
well just push the B1 . . .Bk part of the right-hand side aB1 . . .Bk and scan past the
input symbol a in one step. Since each PDA move will scan past an input symbol,
the machine will take a number of steps equal to the length of the input string.

247

20 PUSHDOWN AUTOMATA AND PARSING

Note that such a PDA will not be one as constructed in the proof of Theorem 20.10,
since those PDAs push the entire right-hand-sides of rules onto the stack, whereas
the PDAs we are talking about now will never have terminal symbols on the stack.

Deterministic Grammars

Now finally suppose that we are lucky enough that our grammar satisfies the
following property:

Property Q: For each variable A there are no two rules A → aB1 . . .Bk
and A → aC1 . . .Cp whose right-hand sides start with the same
terminal.

In this case the choice of type-(i) move is completely determined. So the PDA
never has to make a non-deterministic choice.

Now it is fair to say that we have something that deserves to be called a parsing
algorithm.

Unfortunately it is not the case that every grammar can be put into a Greibach
Normal Form which also satisfies Property Q. But many can. And for many
of those that can’t there are slightly weaker properties that we can apply, which
guarantee reasonable parsing behavior. This is covered in many textbooks, so we
don’t describe that work here.

Conclusion

This has been a good case-study in the role of theory in the development of an
efficient solution to a practical problem. The essential first step was making
the correspondence between grammars and machines: a PDA is a very abstract
representation of a program for answering parsing questions about a grammar.
The code one might generate directly from an arbitrary PDA is not what we’d
like, involving unbounded searching, backtracking through non-determinism, etc.
We refined things by working on the grammar side. By using the normal form
theorems we were able to optimize our grammars for parsing and then use the PDA
technology to provide a framework for program code. Grammars, as mathematical
objects, are more amenable to provably correct transformations than program code.
This is a good general lesson.

248

20 PUSHDOWN AUTOMATA AND PARSING

20.6 Exercises

Exercise 161. Let Σ = {a,b}.

• Construct a PDA M accepting palindromes, i.e., L(M) = {x | x = xR}.
Don’t use the generic construction in Definition 20.11, modify the PDA in
Example 20.8.

• Do some sample computations on each of your answers, over some strings in
the language and not in the language, to gain confidence in your construction.

Hint. The even-length palindromes were written as {wwR | w ∈ {a,b}∗} in
Example 20.8. The odd-length palindromes can be written as

{wawR | w ∈ {a,b}∗} ∪ {wbwR | w ∈ {a,b}∗}

We want to build a PDA accepting these strings in addition to those in
Example 20.8. Just modify the PDA in Example 20.8. You don’t even have to
add any states.

Exercise 162. For each of the following CFGs G,

• Construct a PDA M such that L(M) = L(G), using the construction in
Definition 20.11.

• Do some sample computations on each of your answers, over some strings in
the language and not in the language, to gain confidence in your construction.

• For each accepting PDA computation, give a corresponding grammar
derivation

1. G1 is

S→ aSb | λ

Hint. Just modify the PDA in Example 20.12

2. G2 is

E→ E +E | F
F → F ∗F | 0 | 1

Does your PDA have more than one accepting computation on 1+0*1?
Compare to Example 20.14

249

20 PUSHDOWN AUTOMATA AND PARSING

3. G3 is

S→ aS | bP

P→ aP | bS | a

Note. This grammar has the property that the right-hand side of every rule
starts with a different terminal. After you build your PDA and start to do
some computations, note that this fact allows you to be smart about which
PDA step to do at each moment, i.e. you can avoid any bad guesses. The
PDA is non-deterministic (because that’s the way Definition 20.11 builds
PDAs) but there is a way to “schedule” the PDA deterministically, because
the grammar is nice. This is the kind of thing we meant when we said that
PDAs are abstract representations of parsing algorithms.

4. G4 is

E→+EE | ∗EE | 0 | 1

Note. Compare this grammar to the ambiguous one E→ E +E | E ∗E | 0 | 1
As in the previous problem, the fact that in G4 the right-hand sides of the
rules start with different terminals means that each string has at most one
successful run; this translates into each string having at most one parse tree.
That is, the grammar G4 is unambiguous.

Exercise 163. Let L be
{aibici | i≥ 0}

Show that L is context-free.

Exercise 164. The language D = {w | w can be written as xx for some string x} is
not context-free (over the alphabet Σ = {a,b}).

Show that D, the complement of D, is context-free.

As a hint, note that D can be written as

{w | the length of w is odd}
∪{xayx′by′ | x,y,x′,y′ ∈ Σ

∗, |x|= |x′|, |y|= |y′|}
∪{xbyx′ay′ | x,y,x′,y′ ∈ Σ

∗, |x|= |x′|, |y|= |y′|}

Try building a PDA accepting this language.

250

20 PUSHDOWN AUTOMATA AND PARSING

Exercise 165. CFL and regular closure Suppose L1 and L2 are context-free
languages and suppose that R is a regular language. For each of the following
languages, say whether it is guaranteed to be context-free. If your answer is
“yes” prove it; If your answer is “no” give specific languages which comprise a
counterexample. (Recall that A−B abbreviates A∩B.)

1. L1−R

2. R−L1

3. L1−L2

Hint. Remember the intersection of a regular language and a context-free language
is guaranteed to be context-free.

Exercise 166. Let R be a regular language and let N be a language which is not
context-free. Let X = R∪N.

1. Show by means of examples that we cannot conclude whether X is context-
free or not.

2. Prove that if R∩N = /0 then X is not context-free.

251

21 CONTEXT-FREE MEMBERSHIP AND THE CKY ALGORITHM

21 Context-Free Membership and the CKY Algorithm

The problem of parsing is: given a context-free grammar G and a string x, decide
whether or not x is in L(G) and if so, construct a parse tree for x. For simplicity we
will concentrate on the pure decision problem:

CFG Membership

INPUT: a context-free grammar G and a string x of terminals.

QUESTION: is x ∈ L(G)?

The method we will ultimately settle on for deciding this problem can be refined
to produce a parse tree in case of a positive answer.

21.1 Example.

S→ aS | bA | bS

A→ aB | bB

B→ a | b

Is abb derivable? How about bba? do string abb (no), then bba (yes)

Is there a natural relation between length of string and length of a derivation?

21.2 Example. Consider:

S→ AA

A→ BB

B→ b | λ

Then in fact, λ is generated, but takes 7 steps! (Try it)

21.3 Example. Here the set Σ of terminals is {l,r}. Think of these as standing for
“left” and “right” parenthesis symbols. left and right parenthesis symbols.

S→ AB | AC | SS

C→ SB

A→ l

B→ r

Is this string derivable?
lrlrllrlrrllrr

252

21 CONTEXT-FREE MEMBERSHIP AND THE CKY ALGORITHM

21.1 A Bounded Exhaustive Search

First let’s ignore efficiency and try to construct some algorithm to do the job. The
obvious thing to try is: just start generating derivations in G and wait to see if x is
derived.

S⇒ α1⇒ α2⇒ ··· ⇒???⇒ x ??

But this is not yet a correct solution. It would be fine if we had a computable upper
bound on the number of steps in the derivations we had to search through, since
there are only finitely many derivation sequences of a given length, and we can
effectively generate them. But for an arbitrary CFG there is no nice relationship
between the number of steps in a derivation and the length of the string derived.
The problem is λ-rules and chain-rules.

21.4 Theorem. The membership problem for CFGs is decidable.

Proof. Theorem 19.20 gives an upper bound on how long a derivation could be in
a grammar with no chain or erasing rules. So, let G be a grammar and x a string fo
which we want to decide “x ∈ L(G)?”.

In the special cas where x is λ, use Algorithm 23 to determine whether the start
symbol of G is nullable. This tells us whether nil ∈ L(G)

When x 6= λ, convert G to a grammar G′ with no chain rules or erasing rules, and
L(G′) = L(G)−{λ}. So x ∈ L(G) if and only if x ∈ L(G′).

We can decide whether x ∈ L(G′) by examining all of the finitely many G′-
derivations of length no more than 2|x|−1. ///

This is fine as a decidability result, but it obviously does not give an algorithm that
one wants to use in practice. We can do better: there is a famous algorithm based on
dynamic programming called the Cocke-Kasami-Younger algorithm, which solves
the membership problem in time O(|x|3). This is still not fast enough for most
applications.

The parsing algorithms that are used in practice can be usefully viewed as
refinements of a machine model for context-free languages, pushdown automata,
to which we now turn.

21.5 Lemma. Suppose our grammar does NOT have any erasing-rules or chain-
rule. Then whenever S ∗

=⇒ w, for any string w ∈ Σ∗, the number of steps in the
derivation is at most 2|w|−1.

253

21 CONTEXT-FREE MEMBERSHIP AND THE CKY ALGORITHM

Proof. By hypothesis, every rule in the grammar looks like (i) A→ γ with γ of
length at least 2, or (ii) looks like A→ c for some terminal symbol c. So if α⇒ α′

in a derivation, either (i) the length of α is greater than the length of α′, or (ii) α

has one more terminal symbol than does α′ (or both things can be true).

Now suppose S ∗
=⇒ w. How many derivation steps of type (i) can there be? At

most |w| − 1, since the total length from S to w increases by |w| − 1. How many
derivation steps of type (ii) can there be? At most |w|, since there are |w| terminals
to be generated. So the maximum number of steps is at most 2|w|−1. ///

For such a grammar, an exhaustive search can solve the membership problem.

Without that assumption it is unclear how to put a bound on derivation length (in
the presence of chain rules we might actually have loops in our derivations.)

So we’d like to eliminate λ- and chain-rules if we can.

Algorithm 26: A Naive Algorithm for CFG Membership
Input: a CFG G = (Σ,V,P,S) and a string w ∈ Σ∗

Decides whether w ∈ L(G);
if w = λ then

use Algorithm 23 to see the start symbol is nullable
else

generate all G-derivations of length no more than 2|w|−1;
if if any of these yield w then

return yes
else

return no

21.1.1 Can We Do Better?

It’s easy to see that an exhaustive search through the space of derivations has
exponential worst-case complexity. So the above is nice as a decidability result,
but useless in practice. Can we do better? Is there a polynomial-time algorithm for
the membership problem?

Here’s a two-part answer.

1. Yes, there is a polynomial-time (cubic time in fact) algorithm that works for
an arbitrary context-free grammar. This is presented in Section 21.2.

254

21 CONTEXT-FREE MEMBERSHIP AND THE CKY ALGORITHM

2. For most grammars that arise in practice we can do much better than cubic
time.

Fact (2) above is a crucially important fact in the study of compilers. To go further
in exploring (2) we would dive in to the fascinating and well-developed study of
LL(k) and LR(k) grammars: we don’t do that in these notes . . . we refer you to any
good book about compilers.

21.2 The Cocke-Younger-Kasami algorithm

A dynamic programming algorithm for CFG membership, running in O(n3) time.

Details to be written. . .

255

21 CONTEXT-FREE MEMBERSHIP AND THE CKY ALGORITHM

21.3 Exercises

Exercise 167. Using the CYK algorithm I Consider lots of CNF grammars G
and strings x and run through the Cocke-Younger-Kasami algorithm to determine
whether the string x is in L(G).

Example. Let G be the following grammar.

S → AB

A → a

B → AB | b

Use the Cocke-Younger-Kasami algorithm to determine whether the string aab is
in L(G). (It is.) Then make a parse tree deriving aab. Is there more than one? Then
make a leftmost derivation corresponding to your parse tree(s).

Exercise 168. Here is the CNF grammar generating {aibi | i ≥ 1} from
Section 19.23.

S → AT |AB

T → XB

X → AT | AB

A → a

B → b

Run the CYK algorithm for this grammar on input string aaabbb. Then make
a parse tree deriving aaabbb. Is there more than one? Then make a leftmost
derivation corresponding to your parse tree(s).

Exercise 169. Extending the CYK algorithm I Modify the Cocke-Younger-
Kasami algorithm to count the number of parse trees of a given string.

Exercise 170. Extending the CYK algorithm II Suppose that to each rule in a
Chomsky Normal Form grammar G we associate a cost, and say that the cost of a
derivation of a string w is the sum of the costs of the individual rule steps.

Give an algorithm for finding a minimum-cost derivation of a string w in such a
grammar. What is the complexity of your algorithm?

Hint. Modify the CYK algorithm.

256

22 PROVING LANGUAGES NOT CONTEXT-FREE

22 Proving Languages Not Context-Free

We observed, by a cardinality argument, that there must be some languages that
are not context-free. But that’s not very satisfying; it doesn’t help us understand
whether any given language is context-free. In this section we will learn a
technique for showing languages to be non-context-free.

First we do a concrete example, then show the general result.

22.1 A Language Which is Not Context-Free

One can prove a very general Pumping Lemma —similar to the one for regular
languages— for context-free languages, which can be applied to show lots of
languages not to be context-free. In this note we will be content to show non-
context-freeness of a particular language, namely L = {anbncn | n > 0}. The work
we do for this particular result is almost all we need to prove the general Pumping
Lemma, so once you understand this note you should be able to proceed to the
general result if you care to.

First, a purely combinatorial lemma.

22.1 Lemma. Suppose T is a tree such that every interior node has at most k
children. For any number n ≥ 0: if the number of leaves of T is greater than kn

then there is a path in T with more than n edges.

Proof. It is more convenient to prove the contrapositive. Namely:

Suppose T is a tree such that every interior node has at most k children.
For any number n ≥ 0: if every path of T has no more than n edges
then the number of leaves of T is no more than than kn.

We prove this by induction on n. For n = 0 the assumption is that every path has
no edges; this implies that T is a single node, and so here the number of leaves
is 1, which is indeed no more than k0. When n > 0 (and T not the single-node
tree) consider the tree T ′ obtained from T by removing all the leaves of T . So
every path of T ′ has no more than (n− 1) edges. By induction hypothesis, then,
T ′ has no more than k(n−1) leaves. But T can be built from T ′ by adding back the
children of the nodes which are leaves of T ′: since each of these nodes has at most
k children the number of leaves of T is no more that kk(n−1), that is, kn. ///

257

22 PROVING LANGUAGES NOT CONTEXT-FREE

22.2 Proposition. Suppose G is a context-free grammar. Suppose that G has n
variables and is such that every rule has at most k symbols on its right-hand side.
Then for any string w ∈ L(G) of length greater than kn, any parse tree for w has a
path in T with a repeated variable occurrence.

Proof. Consider any parse tree T for w. Since T has |w| leaves, Lemma 22.1 tell
us that T has a path π with more than n edges. So this π has more than n+1 nodes.
Since only the leaf of π is a terminal symbol, π has more than n variable nodes.
Since the grammar has only n variable symbols, π has a repeated occurrence. ///

22.3 Proposition. The language

L = {anbncn | n > 0}

is not a context-free language.

Proof. For the sake of contradiction, suppose G is a CFG supposedly generating
L. Without loss of generality we may assume that G has no λ- or chain-rules (since
we could eliminate them if need be). Let n be the number of variable symbols in
G, let k be the maximum length of any right-hand side of a rule from G, then let p
be kn.

Let z be the string apbpcp. Note that the length of z is greater than kn, so
Proposition 22.2 applies.

Now consider a leftmost derivation of the string z. Any such derivation has
a repeated variable in some path of its parse tree. Focus on the next-to-last
occurrence of a symbol, call it A, in that path. We have

S ∗
=⇒ u A σ

∗
=⇒ uz1

≡ z

Here σ is a mix of terminals and variables, and Aσ
∗

=⇒ z1.

Since that A is repeated on the path we are thinking about, our leftmost derivation

258

22 PROVING LANGUAGES NOT CONTEXT-FREE

must look like

S ∗
=⇒ u A σ

∗
=⇒ u v A α σ via A ∗

=⇒ v Aα

∗
=⇒ u v w α σ via A ∗

=⇒ w
∗

=⇒ u v w x σ via α
∗

=⇒ x
∗

=⇒ u v w x y via σ
∗

=⇒ y

≡ z

Now observe that the following, completely different, derivation is also a legal
derivation in G

S ∗
=⇒ u A σ

∗
=⇒ u v A α σ via A ∗

=⇒ v A α

∗
=⇒ u v v A α α σ via A ∗

=⇒ v A α

∗
=⇒ u v v w α α σ via A ∗

=⇒ w
∗

=⇒ u v v w x x σ via α
∗

=⇒ x
∗

=⇒ u v v w x x y via σ
∗

=⇒ y

So the string uvvwxxy is also derivable in our grammar. We will have our desired
contradiction if we can show the following

Claim. The string uvvwxxy is not of the form akbkck for any k.

Proof of claim. First, an important detail: we claim that at least one of v or x is a
non-empty string. To see this, note that since A ∗

=⇒ vAα and α
∗

=⇒ x above, we
know that A ∗

=⇒ vAx is a possible derivation in our grammar. Since our grammar
has no λ or chain-rules, this implies that at least one of v or x is non-empty.

To complete the argument that uvvwxxy cannot look like akbkck we examine cases
as to what alphabet symbols appear in v and in x.

If either v or x has more than one kind of letter occurring then uvvwxxy won’t even
be in the form a∗b∗c∗. So we can assume that each of v and x has only one kind of
letter.

But now note that in comparing uvvwxxy with the original uvwxy we have increased
the number of occurrences of one or two kinds of letters, certainly not all three. So
regardless of the ordering of letters uvvwxxy cannot have the same number of each
kind of letter.

259

22 PROVING LANGUAGES NOT CONTEXT-FREE

That finishes the proof of the claim. Since the claim contradicts the fact that G
derives only strings in L, this finishes the proof of the Proposition. ///

Next we prove a general Pumping Lemma for context-free languages.

22.2 A Pumping Lemma for Context-Free Grammars

22.4 Lemma. Let G be a context-free grammar with no chain or λ rules. Let n be
the number of variables of G and let k be the maximum size of a right-hand side of
a rule of G. If z is a word of length greater than kn derivable from G then there is
a derivation of z in G of the following form (for some variable A):

S ∗
=⇒ uAy
∗

=⇒ uvAxy // via A ∗
=⇒ vAx

∗
=⇒ uvwxy // via A ∗

=⇒ w

= z

Furthermore

1. the length of vwx is no more than kn

2. At least one of v or x is not empty

Proof. Choose some parse tree for z. This tree has a repeated variable in some
path. Focus on the next-to-last occurrence of a symbol, call it A, in that path. We
can arrange the steps in a derivation of z so that

S ∗
=⇒ u A σ

∗
=⇒ uz1

≡ z

Here σ is a mix of terminals and variables, and Aσ
∗

=⇒ z1.

260

22 PROVING LANGUAGES NOT CONTEXT-FREE

Since that A is repeated on the path we are thinking about below the indicated A,
our leftmost derivation must, in more detail, look like

S ∗
=⇒ u A σ

∗
=⇒ u v A α σ via A ∗

=⇒ v Aα

∗
=⇒ u v w α σ via A ∗

=⇒ w
∗

=⇒ u v w x σ via α
∗

=⇒ x
∗

=⇒ u v w x y via σ
∗

=⇒ y

≡ z

Now observe that the following, completely different, derivation is also a legal
derivation in G

S ∗
=⇒ u A σ

∗
=⇒ u v A α σ via A ∗

=⇒ v A α

∗
=⇒ u v v A α α σ via A ∗

=⇒ v A α

∗
=⇒ u v v w α α σ via A ∗

=⇒ w
∗

=⇒ u v v w x x σ via α
∗

=⇒ x
∗

=⇒ u v v w x x y via σ
∗

=⇒ y

So the word uvvwxxy is also derivable in our grammar. We will have our desired
contradiction if we can show the following

Claim. The word uvvwxxy is not of the form akbkck for any k.

Proof of claim. First, an important detail: we claim that at least one of v or x is a
non-empty string. To see this, note that since A ∗

=⇒ vAα and α
∗

=⇒ x above, we
know that A ∗

=⇒ vAx is a possible derivation in our grammar. Since our grammar
has no λ or chain-rules, this implies that at least one of v or x is non-empty.

To complete the argument that uvvwxxy cannot look like akbkck we examine cases
as to what alphabet symbols appear in v and in x.

If either v or x has more than one kind of letter occurring then uvvwxxy won’t even
be in the form a∗b∗c∗. So we can assume that each of v and x has only one kind of
letter.

But now note that in comparing uvvwxxy with the original uvwxy we have increased
the number of occurrences of one or two kinds of letters, certainly not all three. So

261

22 PROVING LANGUAGES NOT CONTEXT-FREE

regardless of the ordering of letters uvvwxxy cannot have the same number of each
kind of letter.

That finishes the proof of the claim. Since the claim contradicts the fact that G
derives only words in L, this finishes the proof of the Proposition. ///

Notes.

1. Of course we could just as well have argued that uviwxiy must be derivable
from G, for each i≥ 0.

2. In the above argument we didn’t actually use the fact that we started with the
next-to-last repeated symbol in our path, only that there was some repetition
below.

Think about the following:

(a) The fact that there are no other repetitions below our A tells
us something about how long the string vwx can be, in light of
Lemma 22.1. What is the maximum possible size of vwx?

(b) Having that bound is sometimes useful in proving other languages to
be non-context-free: the ability to restrict the “span” of vwx in the
original word is sometimes essential in arguing that some pumped
version uviwxiy is not in a language.

22.5 Corollary. Let G be a context-free grammar with no chain or λ rules. Let n
be the number of variables of G and let k be the maximum size of a right-hand side
of a rule of G. If z is a word of length greater than kn derivable from G then z can
be written as the concatenation

z = uvwxy

such that

1. the length of vwx is no more than kn

2. At least one of v or x is not empty

3. For each i≥ 0, the word uviwxiy is derivable from G.

We can use Corollary refcfg-pumping to show languages not context-free.

[@@ to be continued]

262

22 PROVING LANGUAGES NOT CONTEXT-FREE

22.3 Exercises

Exercise 171. CFL intersection Show that the context-free languages are not
closed under intersection.

Exercise 172. CFL complement Show that the context-free languages are not
closed under complement.

Exercise 173. CFL subset

1. Prove or disprove: If L is context-free and K ⊆ L then K is context-free.

2. Prove or disprove: If L is context-free and L⊆ K then K is context-free.

Exercise 174. Using the pumping lemma.

Prove that
L = {anbnci | i≤ n}

is not context-free.

Exercise 175. More pumping Show that each of the following languages is not
context-free.

1. {anbm | n2 ≥ m}

2. {anbm | n2 ≤ m}

3. {anbm | n≥ m2}

4. {anbm | n≤ m2}

Exercise 176. Taxonomy For each of the following languages, tell whether it is

• regular

• context-free, but not regular

• not context-free

In each case, prove your answer.

What does this mean? To prove a language regular you can exhibit a finite
automaton (any flavor) or a regular expression, possibly in conjunction with using
some of the known closure properties. To prove a language context-free you can
exhibit a PDA or grammar, possibly in conjunction with using some of the known
closure properties. To prove a language not regular or context-free, you can use a
pumping lemma argument.

263

22 PROVING LANGUAGES NOT CONTEXT-FREE

1. {w ∈ {a,b,c}∗ | w has an equal number of as, bs and cs}

2. {an | n is a power of 2}

3. {w ∈ {0,1}∗ | w represents a power of 2 in binary}

4. {anbm | n = m}

5. {anbm | n 6= m}

6. {anbm | n≤ m}

7. {anbmckdl | n = m or k = l}

8. {anbmckdl | n = m and k = l}

9. {anbmckdl | n = k or m = l}

10. {anbmckdl | n = k and m = l}

11. {anbmckdl | n > k or m > l}

12. {anbmckdl | n > k and m > l}

13. The set of all strings w over {a,b} satisfying: w has an equal number of as
and bs and each prefix of w has at most 1 more a than b and at most 1 more
b than a.

Exercise 177. Prove that

L = {ai jck | i < j < k}

is not context-free.

Exercise 178. 1. Show the following to be a regular language: {anbncn |
n≤ 999}

2. Show the following to be a non-context-free language: {anbncn | n > 999}

Exercise 179. Assume the following fact: Over the alphabet Σ = {a,b}, the
language D = {w | w can be written as xx for some string x} is not context-free.

Prove that the language C = {anbmanbm | n,m≥ 0} is not context-free.

Exercise 180.

264

22 PROVING LANGUAGES NOT CONTEXT-FREE

1. Let L be a language over an alphabet Σ. Let a and b be elements of Σ

and define the function h from Σ∗ to Σ∗ by: h(x) = the result of replacing
all occurrences of a in x by b. Having defined h, let h(L) be the language
obtained by applying h to each member of L, that is, h(L) = {h(x) | x ∈ L}.
Prove that if L is context-free then h(L) is context-free. (Hint: consider
a CFG G such that L(G) = L; show how to build a CFG G′ such that
L(G′) = h(L).

2. More generally, suppose that h is any function mapping elements of Σ to
elements of Σ. Extend h to strings: h : Σ∗ → Σ∗ is defined by h(x) = the
result of replacing all occurrences of each symbol c ∈ Σ by the symbol h(c).
Finally, extend h to languages by: h(L) = {h(x) | x ∈ L}.
Prove that if L is context-free then h(L) is context-free. (Hint: consider
a CFG G such that L(G) = L; show how to build a CFG G′ such that
L(G′) = h(L).

[This phenomenon can be pushed even further, to consider more general
mappings from strings into strings, called “homomorphisms,” which
preserve context-free-ness...]

265

23 DECISION PROBLEMS ABOUT CFGS

23 Decision Problems About CFGs

Some decision problems concerning context-free grammars.

Some results here are sketched, not fully developed.

Important. The input to the problems below is not a language. Indeed this
wouldn’t make any sense. The input to any decision problem must be a finite
object, something that can be presented to a computer. So the inputs below are, for
example, a context-free grammar. Then the question that gets asked is (typically)
about the language that the CFG generates.

23.1 CFG Membership

CFG Membership

INPUT: CFG G, string w

QUESTION: w ∈ L(G)?

There are polynomial-time algorithms for this problem, such as the Cocke-Kasami-
Younger algortihm. Here we just present an exhaustive search, based on bounding
the lengths of derivations. One annoyance is that we have to treat the empty string
as a special case because of the way we eliminate λ-transitions from a gramma.

Algorithm 27: CFG Membership

if w = λ then
return YES if the start symbol is nullable

else
Build grammar G′ with no λ-transitions ;
Generate all derivation of G′ with no more than 2|w|−1 steps;
if if w is derived by one of these then

return YES
else

return NO

23.2 CFG Emptiness

CFG Emptiness

INPUT: CFG M

QUESTION: L(M) = /0?

266

23 DECISION PROBLEMS ABOUT CFGS

Algorithm 28: CFG Emptiness
If the start symbol is generating return NO else return YES

23.3 CFG Infinite Language

CFG infiniteness

INPUT: a context-free grammar G

QUESTION: is L(G) infinite?

First, a preliminary claim:

if G is a CFG with no chain or λ rules, with n variables, and whose rules all have
right-hand sides of length at most k then, letting p = kn, L(G) is infinite if and only
if there is a string z ∈ L(G) with p≤ |z|< 2p.

To verify the claim: first note that this p is precisely the p given by the proof of
the Pumping Lemma for CFLs. Now, if there is a such a string in L(G) then L(G)
is certainly infinite, since the Pumping Lemma explicitly builds infinitely many
strings in L(G). On the other hand, suppose L(G) is infinite, we exhibit a string
z∈ L(G) with p≤ |z|< 2p. Indeed, let z be the shortest string in L(G) whose length
is at least p, and suppose for sake of contradiction that the length of this z were not
less than 2p. By the Pumping Lemma we can write z as uvwxy with |vwx| ≤ p, at
least one of v and x non-empty, and uviwxiy in L(G) for all i. In particular uwy is
in L(G). But we supposed that the length of z was at least 2p, so (by the fact that
|vwx| ≤ p) the length of uwy must be at least p. This contradicts the choice of z as
the shortest string in L(G) of length at least p.

Now it is easy to describe the algorithm for testing infiniteness of L(G):

Convert G to an equivalent grammar G′ with no chain or λ rules;
Let n be the number of variables in G′;
let k be the maximum size of a right-hand-side;
let p be kn.

For each string z with p≤ |z|< 2p,
run the membership test asking whether z ∈ L(G′).
If the answer is ever “yes”, return “yes”.

// If we get here no “yes” was found in the loop
answer “no”.

267

23 DECISION PROBLEMS ABOUT CFGS

Note that the fact that G′ may differ from G as to whether the empty string is
generated makes no difference to the question of whether L(G) is infinite.

Observe that the input to the algorithm is the grammar G — calculating the G′ and
an appropriate p, namely knumber of variables, in the first line, is a job for the algorithm.

The correctness of this algorithm is an immediate consequence of the claim we
proved above.

23.4 CFG Universality

CFG Universality

INPUT: CFG M

QUESTION: L(M) = Σ∗?

This problem is not decidable. That is, there can be no algorithm to answer, in a
finite time, yes or no as to whether an arbitrary CFG generates all strings.

23.5 CFG Ambiguity

CFG Ambiguity

INPUT: CFG G

QUESTION: is G ambiguous?

This problem is not decidable. That is, there can be no algorithm to answer, in a
finite time, yes or no as to whether an arbitrary CFG is ambiguous.

268

23 DECISION PROBLEMS ABOUT CFGS

23.6 Exercises

Exercise 181. Show that the following problem is undecidable, assuming that the
CFG Universality problem is undecidable.

CFG Subset

INPUT: CFGs M1,M2

QUESTION: L(M1)⊆ L(M2)?

Exercise 182. Show that the following problem is undecidable, assuming that the
CFG Universality problem is undecidable.

CFG Equality

INPUT: CFGs M1,M2

QUESTION: L(M1) = L(M2)?

269

Part IV

Computability

270

24 COMPUTABILITY: INTRODUCTION

24 Computability: Introduction

Our goal is to study the most fundamental question about computing:

what problems can be solved by algorithms?

First we need to decide exactly what we mean by “problem” and exactly what we
mean by “algorithm.”

The short answers are

• We will mainly focus on decision problems. These are problems with yes/no
answers. We model these formally as languages over an alphabet.

• We simply take “algorithm” to mean, “program” in any standard program-
ming language. It is an well-know fact that all general-purpose programming
languages have exactly the same expressive power.

24.1 The Halting Problem

We start by presenting the cornerstone result of the whole subject: the undecid-
ability of the decision problem known as the Halting Problem. It doesn’t look so
interesting at first glance. But it is the most important problem, because—as we
will see—it is the key to deriving essentially all other undecidability results.

The Halting Problem

INPUT: a program p and a string x

QUESTION: does p halt on x?

We ask the question: Can there exist a “halt-test” program that will answer this
question? That is, for any pair of inputs p and x, halt-test should return 1 if program
p would halt.

The key to understanding the proof of the next result is to remember that a program
is just a text file. So it makes perfect sense to run a program on another program;
in particular it makes perfect sense to run a program on itself.

24.1 Theorem. There is no program that solves the Halting Problem.

271

24 COMPUTABILITY: INTRODUCTION

Proof. We assume that there is such a program and obtain a contradiction. So
suppose that haltTest is a program taking two inputs p and x with

haltTest[p,x] =
{

returns 1 if p halts on x
returns 0 if p fails to halt on x

We can then write—in C, just to be concrete—the following code.

int main (p) {
if (haltTest(p,p)) /* if p halts on p */

while (1) do ; /* then loop forever */
else /* if p doesn’t halt on p */

return(1); /* then return 1 */
}

So what is the behavior of main of some input p? Just by looking at the code, we
have

main[p] =
{

loops forever if p halts on p
returns 1 if p fails to halt on p

So consider: what is the result of the execution main[main]?

main [main]=

{
loops forever if main halts on main
returns 1 if main fails to halt on main

This is clearly absurd.

We conclude that if haltTest does what we claim it does, we always get a
contradiction. Thus there can be no procedure haltTest that performs as we
claimed originally. That’s the end of the proof. ///

24.2 The Halting Problem Revisited

Here is the same proof, presented visually. This presentation shows a subtle rela-
tionship with the diagonalization argument used to prove certain sets uncountable.
We stress that we are showing the same proof as above: the only difference is that
we don’t give C code here, but we do draw pictures.

Remember that a program is just a text file, and so can be viewed as a string. We
know how to enumerate all Σ2 strings, as w0,w1, . . . , each string occurring as one
of the wi. And since we know how to consider each string in turn and determine
whether it is a legal program, it follows that we can generate a list p0, p1, . . . , of all
programs.

272

24 COMPUTABILITY: INTRODUCTION

So now imagine a table, extending infinitely down and to the right, where —
intuitively — the rows are indexed by the programs and the columns are indexed
by the programs as input strings.

p0 p1 p2 p3 p4 · · · · · ·
p0
p1
p2
p3
p4

...

...

Now for a given row r, that is, the row corresponding to program pr, we can
imagine placing a ↓- mark in column i precisely when pi (as an input string) is
accepted by program pr.

p0 p1 p2 p3 p4 · · · · · ·
p0 ↓ ↓ ↓ ↓ ↓ ↓ ↓

...
p2869 ↓ ↑ ↓ ↑ ↓ ↑ ↓ . . .

...
p5000001 ↑ ↑ ↑ ↑ ↑ ↑ ↑ . . .

...

The picture above suggests the situation where

• program number 0 halts on all inputs

• program number 2869 happens to halt on precisely the strings with even
indices,

• program number 5000001 halts on no inputs, . . .

That picture, then, is precisely the picture of the behavior of our infamous
haltTest program. Then the main program above is the program that on any
input p, goes down the diagonal to the (p, p) entry, and there is a ↓ there, goes

273

24 COMPUTABILITY: INTRODUCTION

into an infinite loop, and if there is ↑ there, returns 1 (and halts). That is, main
inverts the diagonal. The argument that starts with “So consider: . . . ” is precisely
the argument that this inverted diagonal cannot correspond to any of the rows. This
means that the behavior of main cannot be the behavior of any of the pi programs.
But we gave legal code for main!

So where is the contradiction? It lies in the fact that the matrix of ↓ and ↑ symbols
cannot be computed by a program haltTest. Then the code for main isn’t really
code at all, since it is calling for a helper function that knows how to tell it whether
there is a ↓ or a ↑ in a given place.

So the argument is actually even more subtle than the diagonalization arguments we
did earlier, about things not being countable. In those uncountability arguments we
started with a listing of things, and constructed a new thing (inverting the diagonal)
to show that we didn’t start with a complete listing after all. But in this argument
everything is countable, there’s not dispute about that. We can be sure that we have
a complete, list of all programs as rows. What we show is that the diagonalization
trick cannot actually be done by a program since the result would be a program not
in the list.

As a final remark let us stress that the table of ↓ and ↑ symbols is perfectly sensible
mathematically. There is no funny business here: program pr on input pi really
does either halt or not. What our proof shows is just that there is no program that
can fill in that table. This is what the undecidabibility of the Halting Problem
says, in a picture.

To go further in our study of decidability we will need some careful definitions and
preliminary groundwork. That is the business of the next section.

24.3 Exercises

Exercise 183. Consider the following variation on the proof of the undecidability
of the Halting Problem, in which we avoid the use of an induced loop and simply
“swap answers” in the main program.

int main1 (p)
{

if (haltTest(p,p)) /* if p halts on p */
return(0); /* then return 0 */

else /* if p doesn’t halt on p */
return(1); /* then return 1 */

}

274

24 COMPUTABILITY: INTRODUCTION

Will this support a proof-by-contradiction as we did earlier? That is, can we get a
contradiction by assuming that haltTest behaves as assumed, and then reasoning
about this main1 program in exactly the same way as we did for main, namely by
examining main1(main1)?

275

25 DECISION PROBLEMS, LANGUAGES, AND ENCODING

25 Decision Problems, Languages, and Encoding

We are interested in understanding which problems can be solved by computer. The
first step is to be clear about what kinds of problems can even be given as input
to a computer. The main point is that computers can only process finite objects:
integers, rational numbers, graphs and trees, automata, files, etc. Computers cannot
directly process mathematical functions, or real numbers, for example.

25.1 Things Are Strings

A universal uniform way to represent finite objects is as strings over an alphabet.
This isn’t a very deep remark; essentially if you can talk about something, then you
have a way to represent it as a string.

In other words, without loss of generality,

When we manipulate finite objects, we are manipulating strings.

25.2 Decision Problems Are Languages

Let’s define precisely what we mean by decision problem. Informally, a decision
problem is “a family of yes/no questions.” But not arbitrary yes/no questions of
course: we mean questions that have well-defined mathematical answers.

There is a close connection between the kind of “yes/no” questions that we often
want to solve in real life, such as testing integers for primality or testing graphs for
being planar or testing programs for correctness, and questions about membership
in languages. The connection is simply this: once we settle on an alphabet Σ

over which we will represent instances of our problem, the instances for which the
answer to our question is “yes” define a language over Σ, that is, a subset of Σ∗.
That is:

We identify a given problem (in the sense of “a bunch of yes/no
questions”) with the language consisting of all the strings getting a
“yes” answer to the given problem.

This change in perspective and terminology is useful, for example when you are
explaining to your roommate what you’ve been up to in this class, who may not
want to sit still for a discussion of alphabets and languages.

276

25 DECISION PROBLEMS, LANGUAGES, AND ENCODING

25.1 Example. As described above, the following language

{w ∈ {0,1}∗ | w codes an even number.}

can be identified with the problem

Evenness

INPUT: An integer n in binary

QUESTION: Is n even?

25.2 Example. The following problem

Primality

INPUT: An integer n in binary

QUESTION: Is n prime?

can be associated with the language

{w | w is a binary code for a prime number}

The second question is “harder” then the first, intuitively. As we go on we’ll see
various ways of making that precise. But the point to be made here is that these are
the same kind of question.

25.3 Example. The following problem

Termination-on-17

INPUT: A C program p

QUESTION: On input 17, does p terminate normally?

can be associated with the language

{p | p is the source of a C program which terminates normally on input 17}

In this way, the issue of whether a given problem is solvable by machine is
transformed into a question about whether membership in the associated language
is solvable by machine.

277

25 DECISION PROBLEMS, LANGUAGES, AND ENCODING

25.2.1 Problem instances with more than one input

We have been talking about problems as languages, that is, subsets of Σ∗ for
whatever Σ is at hand. But many problems have—intuitively— more than one
input.

For example, when we formalize the “Graph Connectivity” carefully:

Graph Connectivity

INPUT: A graph G and two nodes n1 and n2

QUESTION: Is there a path from n1 to n2?

. . . conceptually this is a completely straightforward extension of what we have
done before but we need to be a little fussy when we formalize it. It turns out that it
is most convenient to still formalize this as a language, that is, as defining a single
set of strings over an alphabet. Here is how we represent instances of a problem
that intuitively has several parts to each input (such as the example immediately
above).

• Isolate an alphabet Σ in which we can represent the data for the problem
instances. (In the Graph Connectivity example we might let Σ be the a set of
symbols to represent nodes and edges.)

• Specify a symbol $ that will never occur in the data for the problem instances.

• Represent the problem instance involving Σ∗-strings 〈a1,a2, . . . ,ak〉 as the
single string a1$a2$. . .$ak This is a string over the alphabet Σ∪ {$}. (In
the Graph Connectivity example, problem instances would look like gxy
where g is some string encoding the graph and x and y are strings encoding
nodes.)

It should be clear that from the perspective of answering questions about whether
there are or are not algorithms to solve problems, the details of such encoding are
not important. So, rather than include such details when we describe problems we
will just use the notation 〈a1,a2, . . . ,ak〉 to stand for a problem instance determined
by a1,a2, . . . ,ak

The crucial takeaway from this observation is that even decision problems that
seems at first glance to be about more than one input can be phrased as decision
problems about a single (complex) input. And so they are also language-
membership problems.

278

25 DECISION PROBLEMS, LANGUAGES, AND ENCODING

25.3 Bit Strings Are Universal

For any given problem domain, it is convenient to choose an alphabet Σ that fits the
problem at hand. If we are doing program analysis, so that the objects of study are
program users have written, we might chose Σ to be ASCII (or UTF-8). If we are
making a DFA as part of designing a traffic light, Σ may include “red”, “yellow”
and “green” as alphabet symbols. And so on. But when we want to do general
reasoning about problems (whether they are decidable, or what their complexity is,
etc) it is better to have more uniformity. That’s pretty easy to achieve: we can take
{0,1} as a canonical alphabet choice.

You might think that there is a price to pay for using only Σ2. But in fact Σ2 is
perfectly general, in the sense that any other finite alphabet can be encoded into it.
Here’s one way to do it.

Suppose Σ = {a0, . . . ,an−1} is any (finite of course) alphabet. Let k = dlog2 ne, that
is, k is the least integer such that 2k−1 ≥ n. Then we can encode each ai as a length-
k bit string. And then any word x over Σ can be encoded as a single bitsring, just by
concatenating the codes for the symbols in x. Since all the symbol-encodings have
the same length, it is easy to translate back from a bitstring encoding of a word to
the original word.14

For example, if Σ were {a,b,c,d,e} we could translate this via

a 7→ 000, b 7→ 001, c 7→ 010, d 7→ 011, e 7→ 100

And the string x = abdb over Σ could be represented as a string over {0,1} as
000001011001

25.4 Enumerating the Bit Strings

It is often useful to have a nice enumeration of the finite bitstrings; we develop that
here. Your first instinct might be to simply identify Σ∗2 with the natural numbers by
treating a bitstring as a natural number in binary notation. That doesn’t quite work,
because of the problem of leading zeros. But this is easily fixed, as follows.

Suppose we list the bitstrings in lexicographic order (ie ordering first by length,
then by comparing earliest difference).

λ,0,1,00,01,10,11,000,001, . . .

14If complexity of computations is being considered, it is worth noting that converting from some
alphabet to Σ2 involves only a linear increase in the length of strings.

279

25 DECISION PROBLEMS, LANGUAGES, AND ENCODING

We can then associate these strings to naturals numbers in the obvious way:

0 7→ λ,1 7→ 0,2 7→ 1,3 7→ 00, . . . ,etc

Now suppose you were asked for the encoding of 173? Do you have to walk
through the list of strings till you get to 173? Similarly, what if you had to decode
001101001? No; it’s a nice and somewhat amusing fact that coding and decoding
under the above scheme can be done “arithmetically” as follows.

Given a string x, add a “1” to the beginning of x, calculate the number that 1x
encodes in binary, then subtract 1 from the answer. You can check that that gives
the association above.

25.5 Summary

1. We can naturally encode finite objects as strings over an alphabet Σ

2. Having chosen such a Σ, we can easily encode tuples of objects as strings
over an enriched alphabet Σ∪{$}.

3. Decision problems are naturally represented as languages, perhaps using the
Σ∪{$} trick.

4. We can encode strings over any alphabet, such as some Σ∪{$}, as strings
over Σ2.

5. Putting the above remarks together, we can naturally decision problems, even
those with several inputs, as languages over Σ2.

6. There is a natural way to put the stings over Σ2 into one-to-one corresponds
with the natural numbers.

25.6 Exercises

Exercise 184. Languages and decision problems For each of the following
languages write the corresponding decision problem (in Input/Question style).

1. The set of strings of even length: {x | length(x) is even}

2. The set of primes in binary.

3. The set {anbn | n≥ 0}.

280

25 DECISION PROBLEMS, LANGUAGES, AND ENCODING

4. (Assume that we have agreed upon some convention about how to encode
graphs as strings.) The set of strings which code graphs that are directed and
acyclic.

5. The set of terminating programs: {p | ∀x.p[x] ↓}

Exercise 185. Decision problems and languages For each of the following
problems write down the corresponding language in “set comprehension” style

1.
INPUT: An integer m
QUESTION: Is m a perfect square?

2.
INPUT: A graph G
QUESTION: Is G connected?

3.
INPUT: A program m
QUESTION: Does m accept every string?

4.
INPUT: A program m
QUESTION: Is L(m) regular?

5.
INPUT: A program m
QUESTION: Is there some program n with fewer lines than m
such that L(n) = L(m)?

Exercise 186. Using the enumeration of Σ∗2 described in Section 25.4:

• Give the number corresponding to 101. Give the number corresponding to
0101. Give the number corresponding to 0000000000 (there are ten 0s in
that last string).

• Give the string corresponding to 10. Give the string corresponding to 99.
Give the string corresponding to 1024.

281

25 DECISION PROBLEMS, LANGUAGES, AND ENCODING

Exercise 187. Here we define a “pairing function” from N2 to N. Define:

π(x,y) =
1
2
(x+ y)(x+ y+1)+ y

Draw a picture of N2 as a grid, that is, with (0,0), (0, 1), (0,2) . . . as one row, then
(1,0), (1, 1), (1,2) . . . as the next row, etc.

Now apply π to these pairs, and see the pattern.

Using this intuition, argue that π is a bijection from N2 to N. (It is actually
somewhat tricky to prove this rigorously).

Exercise 188. For each k≥ 2, define the function πk : Nk→N as follows. Take π2

to be π from Exercise 187. For k > 2, define

π
k(n1,n2, . . . ,nk) = π(πk−1(n1,n2, . . . ,nk−1),nk)

Show that πk is a bijection, assuming that π2 is a bijection.

Exercise 189. It is often useful to have a nice (meaning computable) enumeration
of the set (Σ∗2)

2. Invent one. That is, define a computable bijection f : (Σ∗2)
2→ N.

There is no one right answer here! All that matters is that your function f
computable by a program.

Now generalize your construction, to define, for each k, a bijection f k : (Σ∗2)
k→N.

Hint. You might use the results of Exercise 188.

282

26 FUNCTIONS, PROGRAMS, AND DECIDABILITY

26 Functions, Programs, and Decidability

The very first thing we have to do is settle on what mathematical model to use to
capture general computation.

26.1 Turing Machines and Programs

You may be familiar with two other models of computation:

• finite automata, which accept the regular sets, and

• pushdown automata, which accept the context-free sets.

Pushdown automata are more powerful than finite automata: they can accept
languages that finite automata cannot, such as {anbn | n≥ 0}. But pushdown
automata are not the most powerful computing device we can imagine, since
they cannot accept certain sets that we can imagine recognizing by a machine;
an example is {anbncn | n≥ 0}.

So we now move on to a model of computation which is more powerful than finite
and pushdown automata. In fact this model will be powerful enough to capture
everyone’s intuitive notion of “computing machine.”

This next kind of machine in the hierarchy of computing devices is the Turing
machine [Alan Turing, 1937]. Roughly speaking a Turing machine is a finite
automaton with an unbounded read/write memory. A Turing machine can be used
as a language acceptr just as finite automata and pushdown automata can, but since
they can write as well as read symbols they can also be viewed as producing output
based on their input.

Why are Turing machines are studied?

• Turing machines are exactly as powerful as programs in any standard high-
level programming language such as C/C++, Java, or Scheme.

• They are much simpler than programs in a high-level program. This
simplicity is very useful in advanced work, for example in showing that
certain “combinatorial” problems are not decidable, or in the study of
complexity theory.

283

26 FUNCTIONS, PROGRAMS, AND DECIDABILITY

It is remarkable that a single modification of finite automata (adding read/write
memory) buys us universal computing power. But the fact that Turing machines are
so low level makes them awkward to work with in most situations: constructing a
Turing machine to do even a simple job like testing whether a string is a palindrome
is tedious and unenlightening.

So we are going to proceed in a simpler way. We will use programs themselves
rather than Turing machines, as much as we can, to study computability. Since our
goal is to study pure computability as a concept, It does not matter whether we take
Turing machines or programs as our “official” formalism. And our investigations
will stay closer to our intuitions if we stick with familiar programming idioms.

By the way, it does not matter which standard programming language we use to
study computability. We can make this remark more precise after we do a little
work; see Section 26.4.1.

26.2 Partial Functions

The definitions in this section make perfect sense for an arbitrary alphabet, but
remember that we agreed to work over Σ2 = {0,1} for simplicity.

26.1 Definition (Partial Functions and Functions).

• A partial function f : Σ∗2→ Σ∗2 is a set of ordered pairs (x,y) of strings such
that for every x ∈ Σ∗2 there is at most one y ∈ Σ∗2 with (x,y) ∈ f .

• A function f : Σ∗2→ Σ∗2 is a set of ordered pairs (x,y) of strings such that for
every x ∈ Σ∗2 there is exactly one y ∈ Σ∗2 with (x,y) ∈ f .

• The domain of a partial function f is {x | ∃y, (x,y) ∈ f}.

Mathematical convention leads us to usually write f (x) = y instead of (x,y) ∈ f .

It is rare in ordinary mathematics to work with partial functions. But in
computability theory, partial functions are the norm. This may seem like a weird
design choice for our investigation. You’ll see whay we have to make that choice,
later (Section 32).

Caution! When we refer to a certain f as being a “partial function” we do not
mean that its domain fails to be all of Σ∗2: we are just leaving open that possibility.
That is to say, a “function” is also a “partial function.”

284

26 FUNCTIONS, PROGRAMS, AND DECIDABILITY

26.3 Programs Compute Partial Functions

Recall a few conventions about programs in the C programming environment:

• A text file is conventionally modeled as a sequence of characters (terminated
by an end-of-file marker, which we will ignore here). In standard formal-
languages terminology, a text file is simply a string over the alphabet Σ2

• A C program is itself just a text file.

• A C program p can take input from the standard input file stdin, and it can
return values, which we will treat as strings.

• It is possible that on some inputs p fails to terminate at all, that is, the
computation runs forever. (Remember that in our computational model we
are not allowing the operating system to halt our program due to a stack
overflow or other resource constraints.)

The takeaway from the above discussion is just this: a program is a device for
transforming strings into other strings.

26.2 Notation. Suppose p is a program, and x = x1, . . .xk is a sequence of string
over Σ2. Suppose the program p is executed with standard input consisting of the
bitstring x. Then we write

• p[x] ↓ y if the execution of p halts, and y is the initial sequence of 0s and
1s on standard output (before the first non 0 or 1 character if any);

• p[x] ↑ if the execution of p does not halt.

What About Running out of Memory (etc)? We suppose that there are no
constraints on the time or space allocated to the process in which our program runs.
This is an important point. We are interested in the pure behavior of programs and
want to abstract away from annoying interventions from the operating system, for
example if it doesn’t want to give our program as much time or stack space it wants.

When we study the complexity of computations, we will certainly want to measure
the amount of time and/or the amount of space that a computation takes. The point
we are making now is that we are not going to put any arbitrary bounds on the time
or space as part of the formalism.

285

26 FUNCTIONS, PROGRAMS, AND DECIDABILITY

26.3 Definition (The Partial Functions Computed by a Program). Let p be a
program. The partial function computed by p, denoted pfn(p), is defined on strings
x as follows

pfn(p)(x) =
{

y if p[x] ↓ y
undefined if p[x] ↑

A partial function f is computable if it can be computed by a program, that is , if
there is some program p such that f is pfn(p).

26.4 Programs Are Not The Same As Functions!

At first it may seem that insisting on the distinction between programs and
functions is just quibbling. But think a little more and you’ll see that of course
we want to make this distinction. Obviously we can have two radically different
programs that happen to compute the same function. Indeed, if this were not true
then it would make no sense to refactor or optimize programs: when you refactor
a program p you making it into a different program, certainly, but you presumably
want the new program p′ to have the same input/output behavior. That is, you will
have p 6= p′ but pfn(p) = pfn(p′). This helps to clarify the distinction between
programs and functions.

26.4.1 Programming Languages are Equally Expressive

The definitions we have made above are—apparently— only rigorous definitions
relative to a particular programming language. That is, if we had decided to use
Jana in our discussion rather than C, we might have arrived a different set of
mathematical functions on “computable by a program.”, it seems. But a crucially
important fact is that this is not the case.

Fact All standard high-level programming languages, such as C, C++, Java,
Python, Haskell, Scala, LISP, Fortran, . . . , compute exactly the same partial
functions from Σ∗2 to Σ∗2.

Given any two specific languages it is a perfectly precise statement to say that they
compute the same partial functions. But we don’t state the above Fact as a theorem,
just because we don’t want to carefully define what we mean by “standard high-
level programming language.”

286

26 FUNCTIONS, PROGRAMS, AND DECIDABILITY

26.5 Programs Accept Languages

Once we understand that a program computes a function over strings, we can then
consider a program p to define a set of strings over Σ2: those strings which cause
the program to return 1. That is, any program defines a language.

26.4 Definition (Language of a Program). Suppose p is a program. The language
accepted by p, denoted L(p), is the set of all strings for which p returns 1:

L(p) def
= {x | p[x] ↓ 1}

Note carefully that there are two distinct ways that a program p might fail to accept
a string x: either p terminates on x with a return value other than 1, or p does not
terminate at all when x is the input. The only way x ∈ L(p) holds is for p to
terminate on x, returning 1.

26.5 Definition (Decision Procedures). Let p be a program. Say that p is a decision
procedure if for every input x, either p returns 1 or p returns 0.

The fundamental thing about decision procedures is not the specifics of returning
0 and 1 (that’s a detail: any two distinct return values would have the same effect)
but rather the fact that they will never run forever on any input.

26.6 Decidable Languages

Finally we can make our central definition.

26.6 Definition. A language L⊆ Σ∗2 is decidable if it is L(p) for some decision
procedure p, that is, if there is a program p with

pfn(p)(x) =
{

1 if x ∈ L
0 if xnot ∈ L

We have already seen lots of examples of decidable problems.

• Given a context-free grammar G and a string w, is w ∈ L(G)?

• Given a DFA M, is L(M) = /0?

• Given two DFAs M and N, is L(M) = L(N)?

287

26 FUNCTIONS, PROGRAMS, AND DECIDABILITY

26.7 Two Examples

26.7 Example. Let p be a program whose pseudocode is:

// accepts 0n1n

read input into an array;
oksofar = true;
scan array, counting 0’s, hold count in n1;
scan array, counting 1’s, hold count in n2;

if see an 0, return (0);

if n1==n2 return (1) else return (0)

L(p) is {0n1n | n≥ 0}. Here, more is true than the simple fact that the program p
there accepts this language. Since p always halts, we can treat return (1) as saying
“yes, the input string looked like anbncn for some n,” and we can treat return (0)
as saying “no, the input string did not look like 0n1n for any n.” That is, p is a
decision procedure for testing membership in the language {0n1n | n≥ 0}.
Compare this situation to the following one.

26.8 Example. Let q be a program whose pseudocode is:

// Checks a CFG for ambiguity
read grammar G from stdin;
while (true)

systematically generate all parse trees G can make;
whenever a tree T is built, with frontier w, see if w is
generated by any previous different tree T’;
if so return (1);

So q is a pretty dumb program, but you should be able to see that if an ambiguous
grammar is presented as input to q then q is guaranteed to eventually realize that q
is ambiguous and halt with return (1); while if q is given a non-ambiguous grammar
it will never do an return (1). Thus L(q) is {G | G is an ambiguous CFG}.
The important thing to note about the two programs above is that p is a decision
procedure and q is not. In fact if G is a CFG which is not ambiguous and which
generates infinitely many strings, q will fail to halt on that grammar. So q is not
what we would call a decision procedure for testing grammar ambiguity.

Each program defines a language. But only the former is a decision procedure.
This distinction is crucial, in fact the whole study of decidability hinges on it.

288

26 FUNCTIONS, PROGRAMS, AND DECIDABILITY

26.8 Undecidable Problems: a Cardinality Argument

It is easy to see that not every problem is decidable, just by cardinality.

Notice that a C program is just a text file, which means that it is (just) a finite string
over Σ2. Thus: the set of all C programs is countable.

26.9 Theorem. There exist languages that are not decidable.

Proof. There are uncountably many languages over Σ2. But since there are
only countably many C programs there are only countably many decidable
languages. ///

One way to read this result is that most languages are undecidable. But that is
not so satisfying, and it doesn’t give any insight about what kinds of things are
undecidable. Read on.

26.10 Check Your Reading. Explain why the argument above goes through even
if we had not committed to the binary alphabet Σ2. That is explain why for any
non-empty alphabet Σ, there are uncountably many languages over Σ.

On terminology

Sometimes different words are used for these all notions. (Skip the following
discussion if you like, it’s here to reconcile the notation here with what you might
see in other texts)

• A synonym for decidable used by some authors is recursive.

The term “recursive” used in this context has nothing to do with the idea
of a program calling itself. It just happens to be the term used by the
original researchers exploring questions of decidability (at a time before
there were any high-level programming languages supporting what we now
call “recursion!”) So do not read anything into the term — it means nothing
more nor less than what the definition of decidable says.

• The terms recursively enumerable and semidecidable are synonyms. Some-
times the term Turing-recognizable is used.

The phrase “recursively enumerable” is also a bit strange at this point. A
justification for this phrase is in Section 31 below. A convenient abbreviation
for “recursively enumerable” is “RE.” Indeed this is such an easy-to-
pronounce shorthand that most people prefer to use “RE” to refer to a semi-
decidable language.

289

26 FUNCTIONS, PROGRAMS, AND DECIDABILITY

• There are synonymous terms in use for the notion of computable function as
well: some authors call computable functions “recursive” functions (which
is really confusing: we won’t do this).

26.9 Extensionality

When we say that a language is, or is not, decidable, we are making a mathematical
statement about the language, as opposed to a psychological statement about how
we human being understand the language. This is a very important point, but one
that is easy to get confused about. To see the point consider the following two
problems, taken from [RR67]

Exactly n 5s

INPUT: A natural number n

QUESTION: Does there exist a run of exactly n consecutive 5’s in the
decimal expansion of π?

At present, it is not known whether this problem is decidable. (It is clearly semi-
decidable.) But constrast this with the following problem.

At Least n 5s

INPUT: A natural number n

QUESTION: Does there exist a run of at least n consecutive 5’s in the
decimal expansion of π?

This problem is decidable.

To see this, observe that there are two possibilities: either (i) there are arbitrarily
long runs of consecutive 5’s in the decimal expansion of π, or (ii) there is a longest
such run. This much is clear.

Suppose (i) is the case. Then the following is an algorithm for the At Least n 5s
problem: on input n, return 1.

Suppose (ii) is the case. Let k be the length of the longest run of consecutive 5’s in
the decimal expansion of π. Then the following is an algorithm for the At Least n
5s problem: on input n, if n≤ k, return 1, else return 0.

290

26 FUNCTIONS, PROGRAMS, AND DECIDABILITY

You may object, “but we don’t know whether (i) or (ii) is true, and even if (ii) is
true we don’t know what k is!” But that doesn’t matter. The point is that regardless
of our human state of knowledge at the moment, we have shown that there exists
an algorithm for the At Least n 5s problem. The fact that we don’t happen to know
what algorithm is the correct one is not relevant. This is what we meant above
when we said that decidability is a mathematical notion, not a psychological one.

What you should take away from this example is a deeper understanding of what
undecidability means. It is not about how hard certain are for us to understand, it
is about the inherent complexity of certain languages as mathematical objects.

If the above discussion is troubling, answer the following question

26.11 Check Your Reading. True or false: the number

2824682346682364823428518720438450456

has a prime factorization.

I hope you answered True. And I hope you didn’t feel like you needed to find that
factorization before being confident in your answer. We know that the assertion
that that number has a prime factorization is true even without being able to say
what it is. In the same way, we can sometimes say that certain decision problem
has an algorithm, without being able to say what it is.

26.10 Section Summary

• A partial function f : Σ∗2→ Σ∗2 is a set of pairs of strings such that for every
x ∈ Σ∗2 there is at most one y ∈ Σ∗2 such that f (x) = y.

If for every x there is exactly one y such that f (x) = y, we imply say that f
is a function.

Sometimes, if we want to emphasize the fact a certain f is really a function,
that is, defined on all inputs, we will say total function. But that is just a
reminder to the reader, strictly speaking, the word “total” is redundant.

• When p is a program, pfn(p) is the partial function defined by

pfn(p)(x) =
{

y if p[x] ↓ y
undefined if p[x] ↑

• A partial function f : Σ∗2 → Σ∗2 is computable if there is some program p
such that f is pfn(p).

291

26 FUNCTIONS, PROGRAMS, AND DECIDABILITY

• When p is a program, the language accepted by p is the set of all strings for
which p returns 1, and is denoted L(p):

L(p) def
= {x | p[x] ↓ 1}

• Program p is a decision procedure if for every input x,

either p[x] ↓ 0 or p[x] ↓ 1.

• A language L⊆ Σ∗2 is decidable if it is L(p) for some decision procedure p.

• When a language fails to be decidable we may say that it is undecidable.
That is, “not decidable” and “undecidable” are synonymous.

292

26 FUNCTIONS, PROGRAMS, AND DECIDABILITY

26.11 Exercises

Exercise 190. Give a concrete example showing that we can have L(p) = L(q)
yet pfn(p) 6= pfn(q) Even more, find three programs p,q, and r that compute three
different functions, yet they all accept the same language.

Exercise 191 (A useful construction). Suppose p is a program, which returns the
value 1 for certain inputs (and on other inputs either returns something else or
maybe loops forever). Then we can construct another program p′ that behaves as
follows. On any input x:

• if p[x] ↓ 1 then p′[x] ↓ 1,

• if p[x] ↓ y, for any y 6= 1, then p′[x] ↑

• if p[x] ↑ then p′[x] ↑

Thus L(p′) = L(p) but the domain of the function computed by p′ is precisely
L(p′).

Show how to construct p′ from p (cf. Section 191). Notice that what you are asked
for here is a construction that takes as input some program p and returns as output
an appropriate program p′.

293

27 SOME DECIDABLE LANGUAGES

27 Some Decidable Languages

Which languages are decidable? There are lots of easy examples:

• the set of prime numbers

• the set connected graphs

• the set of circuits computing a given boolean function

• the set of strings that make a syntactically legal Java program

When you start tackling more sophisticated questions, you can encounter less-
obviously-decidable questions. Most especially, questions that involve reasoning
about systems can start to edge towards undecidability (the prime example is of
course the Halting Problem). In this section we will look at languages which
embody reasoning about systems modeled as finite automata and context-free
grammars. The moral of the story is that these relatively simple systems do mostly
lend themselve to decidable reasoning. When—in later chapters—we explore
reasoning about fully-expressive systems, i.e. full-fledged program, the news is
more discouraging.

In the second part of this chapter we collect some useful results about closure of
the decidable languages under operations such as intersection, concatenation, etc.

27.1 Decision Problems about Finite Automata

Refer to Section 15, where we provided a selection of questions concerning DFAs,
NFAs, and regular expressions, each of which was decidable. They were presented
there in decision-problem formalism; we describe them more succinctly here as
languages.

1. DFA Membership

{〈M,w〉 | M is a DFA, w is a string, w ∈ L(M)}

2. DFA Emptiness
{M | M is a DFA, L(M) = /0 }

3. DFA Universality

{M | M is a DFA over an alphabet Σ, and L(M) = Σ∗ }

294

27 SOME DECIDABLE LANGUAGES

4. DFA Subset

{〈M1,M2〉 | M1,M2 are DFAs, and L(M1)⊆ L(M2)}

5. DFA Equality

{〈M1,M2〉 | M1,M2 are DFAs, and L(M1) = L(M2)}

6. DFA Infinite Language

{M | M is a DFA, and L(M) is infinite }

7. NFA Membership

{〈M,w〉 | M is an NFA, w is a string, w ∈ L(M)}

8. Regular Expression Membership

{〈E,w〉 | E is a regular expression, w is a string, w ∈ L(E)}

27.2 Decision Problems About CFGs

In Section 23 we looked at a selection of decision languages concerning CFGs and
PDAs. Not all of these were decidable. The following ones were.

1. CFG Membership

{〈G,w〉 | G is a CFG, w is a string, w ∈ L(G)}

2. CFG Emptiness

{G | G is a CFG, and L(G) = /0 }

We said in Section 23 that the CFG Universality and CFG Ambiguity problems
were not decidable; those proofs can be found in Section 35.

295

27 SOME DECIDABLE LANGUAGES

27.3 Closure Properties of the Decidable Languages

Let’s collect some easy abstract properties of decidable languages.

27.1 Theorem. The decidable languages are closed under the operations of

1. intersection,

2. union,

3. concatenation, and

4. Kleene star

Proof.

1. Suppose A and B are decidable languages; we wish to show that A∩B is
decidable. Let pA be a decision procedure such that L(pA) is A, and let pB

be a decision procedure such that L(pB) is B. Our goal is to show that there
exists a decision procedure r such that L(r) is A∩B. We exhibit pseudocode
for such a program as follows:

on input w;
run pA on w;
run pB on w;
if each of these runs are accepting, then return (1) else return (0)

To defend the claim that this program suffices we must argue that r is a
decision procedure and that L(r) is A∩ B. The fact that r is a decision
procedure follows from the facts that both pA and pB are decision procedures,
and so when they are run on w they are guaranteed to return. The fact that
L(r) is A∩B is immediate.

2. Suppose A and B are decidable languages; we wish to show that A∪B is
decidable. Let pA be a decision procedure such that L(pA) is A, and let pB

be a decision procedure such that L(pB) is B. Our goal is to show that there
exists a a decision procedure program r such that L(r) is A∪B. We exhibit
pseudocode for such a program as follows:

on input w;
run pA on w;
run pB on w;
if either of these runs are accepting, then return (1) else return
(0)

296

27 SOME DECIDABLE LANGUAGES

To defend the claim that this program suffices we must argue that r is a
decision procedure and that L(r) is A∪ B. The fact that r is a decision
procedure follows from the facts that both pA and pB are decision procedures,
and so when they are run on w they are guaranteed to return. The fact that
L(r) is A∪B is immediate.

3. Next is concatenation; this is a little more interesting. Suppose A and B are
decidable languages; we wish to show that AB is decidable. Let pA be a
decision procedure such that L(pA) is A, and let pB be a decision procedure
such that L(pB) is B. Our goal is to show that there exists a a decision
procedure r such that L(r) is AB. We exhibit pseudocode for such a program
as follows:

on input w;
consider in turn each pair of strings w1, w2 such that w1w2 = w:

run pA on w1;
run pB on w2;
if each of these runs are accepting, then return (1)

// If we get here we have failed...
return (0).

To defend the claim that this program suffices we must argue that r is a
decision procedure and that L(r) is AB. The fact that r is a decision procedure
follows from the facts that both pA and pB are decision procedures, and
that given w there are only finitely many pairs of strings w1, w2 such that
w1w2 = w. (How many are there precisely, in terms of |w|?). That is, the
for-loop is guaranteed to have only finitely many iterations. The fact that
L(r) is AB is straight from the definition of concatenation: a string w is in
AB if and only if there are strings w1 ∈ A and w2 ∈ B such that w = w1w2.

4. Finally, for Kleene star: Suppose A is a decidable language; we wish to show
that A∗ is decidable. Let pA be a decision procedure such that L(pA) is A.
Our goal is to show that there exists a a decision procedure program r such
that L(r) is A∗. We exhibit pseudocode for such a program as follows:

on input w;
consider in turn each sequence of strings w1,w2, . . .wn such that
w1w2 . . .wn = w:

run pA on w1;
run pA on w2;
. . .

297

27 SOME DECIDABLE LANGUAGES

run pA on wn;
if each of these runs are accepting, then return (1)

// If we get here we have failed...
return (0).

To defend the claim that this program suffices we must argue that r is a
decision procedure and that L(r) is A∗. The fact that r is a decision procedure
follows from the fact that pA is a decision procedure, and that given w
there are only finitely many sequences of strings w1, w2, . . . ,wn such that
w1w2 . . . ,wn = w. That is, the for-loop is guaranteed to have only finitely
many iterations, and each for-loop body has only finitely many statements.
The fact that L(r) is A∗ is straight from the definition of asterate: a string w
is in A∗ if and only if there are strings w1,w2, . . .wn such that each wi is in A
and w1w2 . . .wn = w.

///

27.4 Exercises

Exercise 192. Give decision procedures for each of the following problems.

Each of your answers should be a script that does nothing besides

• call one or more algorithms we have developed in these notes for building
new automata from old ones, and

• call one or more algorithms we have developed in this section for deciding
properties of automata

Use the algorithms in this section as a guide to how formal to be.

To give you an idea of how things things go, the first one is done for you.

1. Given a DFA M: Does M accept any strings of even length?

Solution.
The idea: It is easy to make DFA ME that accepts precisely the strings of
even length. So to ask whether the given DFA M accepts any strings of
even length is to ask whether L(M) and L(ME) have any strings in common.
That’s the same as asking whether L(M)∩L(ME) is non-empty. We know
how to make a DFA accepting the intersection of two languages, and we
know how to test whether the language of a DFA is non-empty....

298

27 SOME DECIDABLE LANGUAGES

The algorithm

Algorithm 29: DFA AcceptAnyEven
Input: a DFA M
Decides: does L(M) contain any even-length strings?

construct a DFA ME such that L(ME) = the strings of even length ;
construct a DFA P such that L(P) = L(M)∩L(ME) ;
call Algorithm DFA Emptiness on P ;
if L(P) is empty then

return NO
else

return YES

2. Given a DFA M: Does M accept every even length string? (This is not the
same as asking whether M accepts precisely the even-length strings.)

3. Given a DFA M: Does M reject infinitely many strings?

4. Given DFAs M and N: Do M and N differ on infinitely many inputs? (More
formally: is the symmetric difference between L(M) and L(N) infinite?)

5. Given RegExps E and F : Do E and F define the same language?

299

28 SOME UNDECIDABLE LANGUAGES

28 Some Undecidable Languages

So far we have only one example of an undecidable language: the language
associated with the Halting Problem:

Halt
def
= {〈p,x〉 | p halts on x }

In this section we generate lots more examples, focusing on properties of programs.
In later chapters we look at problems in other domains, such as grammars and
arithmetic.

28.1 Standalone Arguments

The hard way to show languages undecidable is to give an argument directly,
without piggy-backing on any other known undecidability results. Here are two
examples (just variations on what we did with Halt).

28.1.1 The Self-Halting Problem

Define
SelfHalt

def
= {p | p halts on p }

This is the language of programs that halt on themselves. It is a useful one-
argument version of the Halting Problem. It is undecidable, and indeed we already
did the work in showing it undecidable, in Section 24. That is, what the proof of
the Halting Problem really showed is that SelfHalt is undecidable. To make the
point, here is a full proof that SelfHalt is undecidable; please note that almost all
of it is verbatim from the proof we did in Section 24.

Proof. We assume that there is a program deciding SelfHalt and obtain a
contradiction. So suppose that selfHaltTest is a program taking one input p
with

selfHaltTest[p] =
{

returns 1 if p halts on p
returns 0 if p fails to halt on p

We can then write—in C, just to be concrete—the following code.

300

28 SOME UNDECIDABLE LANGUAGES

int main (p) {
if (selfHaltTest(p)) /* if p halts on p */

while (1) do ; /* then loop forever */
else /* if p doesn’t halt on p */

return(1); /* then return 1 */
}

So what is the behavior of main of some input p? Just by looking at the code, we
have

main[p] =
{

loops forever if p halts on p
returns 1 if p fails to halt on p

So consider: what is the result of the execution main[main]?

main [main]=

{
loops forever if main halts on main
returns 1 if main fails to halt on main

This is clearly absurd.

We conclude that if selfHaltTest does what we claim it does, we always get
a contradiction. Thus there can be no procedure haltTest that performs as we
claimed originally. That’s the end of the proof. ///

28.1.2 The Acceptance Problem

The Acceptance Problem is a mild variation on the Halting Problem. Suppose we
don’t ask whether a given program P halts on a given input x, but rather ask whether
P accepts x. We use the term “accepts” to evoke acceptance in the sense of finite
automata, but we need to define what we mean exactly when we say that a program
accepts an input.

Recall the definition of acceptance (not the same as halting, since a program could
halt on an input without accepting it).

28.1 Definition (Program Acceptance). Let p be a program and let x be an input
string. Say that p accepts x if, when p is executed with x as input, p halts and
returns 1.

The decision problem is

Program Acceptance

INPUT: A program p and an input x

QUESTION: Does p accept x?

301

28 SOME UNDECIDABLE LANGUAGES

and the language corresponding to this decision problem is

Acc
def
= {〈p,y〉 | program p accepts input y.}

The Acceptance Problem is not decidable. The proof is almost exactly like the
proof for the Halting Problem (which isn’t surprising since the the two problems
are pretty similar). The fact that the proofs are so similar makes it valuable to study
them both. By seeing where they are the same and where they are different you
will get insight into the fundamental idea.

28.2 Theorem. The Acceptance Problem is not decidable.

Proof. For sake of contradiction, Suppose that accTest is a program taking two
inputs p and x with

accTest(p,x) =
{

returns 1 if p accepts x
returns 0 if p fails to accept x

Now we build the following program. . . .

int accSwap (p)
{

if (accTest(p,p) == 1) /* if p accepts p */
return (0); /* then reject */

else /* if p doesn’t accept p */
return (1); /* then return 1 */

}

So

accSwap(p) =
{

returns 0 if p accepts p
returns 1 if p fails to accept p

Now we play the same trick as we did with the Halting Problem: we analyze
accSwap[accSwap]. We have

accSwap [accSwap]) =

{
returns 0 if accSwap accepts accSwap
returns 1 if accSwap fails to accept accSwap

This is absurd. So our assumption about accTest is inconsistent, and no such
accTest program can exist.

///

302

28 SOME UNDECIDABLE LANGUAGES

28.2 Undecidability via Reduction

The most powerful technique to show languages undecidable is to leverage
previously-derived undecidability results. To show a language X to be undecidable
we can proceed this way:

1. Cleverly choose some language U that has previously been proven to be
undecidable

2. Make an argument by contradiction, namely, given an argument that shows
that if X were decidable, then U would be undecidable

Typically, the way we establish (2) is to give pseudocode for a program which
which calls as a subroutine a procedure DX that asks questions about membership
in X , and which would correctly compute membership in U under the assumption
that DX correctly computes membership in X . Since we already know that there
cannot be a correct decision procedure for U , we can conclude that there cannot be
a correct decision procedure for X .

28.2.1 The Hello World Problem

Consider the decision problem of determining whether a given program computes
the constant function that always returns “Hello World.”

28.3 Proposition. The following language is undecidable.

HelloWorld
def
= {p | p is a program that always prints ”Hello World”.}

Proof. We show that if HelloWorld were decidable, then SelfHalt would be
decidable. So let us suppose, for the sake of contradiction that we had a decision
procedure DHelloWorld for membership in HelloWorld. With the help of DHelloWorld,
we can build a decision procedure D for membership in SelfHalt. Here is D.

on input w,

1. build the following program p

On input x:
simulate w on w;
print ‘‘Hello World’’

2. return the result of DHelloWorld on p.

303

28 SOME UNDECIDABLE LANGUAGES

So, to be clear, D is a decision procedure that first constructs a certain program p,
and then calls DHelloWorld on that program.

We want now to show that D returns 1 on an input w if and only if w ∈ SelfHalt.

• Suppose w is in SelfHalt. Then the new program prints ”Hello World” on all
inputs x (after the intial simulation of w on w). So DHelloWorld will return 1
on this p. So D will return 1 on w.

• Suppose w is not in SelfHalt. Then on any input x, the new program will
loop forever. So the new program certainly doesn’t print ”Hello World” on
all inputs. So DHelloWorld will return 0 on this p. So D will return 0 on w.

We have just argued that D is a decision procedure for SelfHalt, provided that
DHelloWorld behaves as we assumed. Since we already know that there cannot be a
decision procedure for SelfHalt, we conclude that DHelloWorld cannot behave as we
assumed. ///

This is a hard proof to understand. But it is worth the effort, since it actually proves
lots of seemingly different results with no extra effort. Read on.

28.2.2 The Identity Problem

Consider the decision problem of determining whether a given program computes
the identity function.

28.4 Proposition. The following language is undecidable.

Id
def
= {p | p is a program computing the identity function}

Proof. This proof will be almost word-for-word the same as the proof of
Proposition 28.3. Read carefully, and notice the tiny places where it differs.

We show that if Id were decidable, then SelfHalt would be decidable. So let us
suppose, for the sake of contradiction that we had a decision procedure DId for
membership in Lid . With the help of DId, we can build a decision procedure D for
membership in SelfHalt. Here is D.

on input w,

1. build the following program p

304

28 SOME UNDECIDABLE LANGUAGES

On input x:
simulate w on w;
return x

2. return the result of DId on p.

We want now to show that D returns 1 on an input w if and only if w ∈ SelfHalt.

• Suppose w is in SelfHalt. Then the new program computes the identity
function (in a perverse way, to be sure). So DHelloWorld will return 1 on
this p. So D will return 1 on w.

• Suppose w is not in SelfHalt. Then on any input x, the new program will loop
forever. So the new program certainly doesn’t compute the identity function.
So DHelloWorld will return 0 on this p. So D will return 0 on w.

We have just argued that D is a decision procedure for SelfHalt, provided that DId

behaves as we assumed. Since we already know that there cannot be a decision
procedure for SelfHalt, we conclude that DId cannot behave as we assumed.

///

28.2.3 The Always-Halting Problem

Consider the decision problem of determining whether a given program halts on
all of its inputs.

28.5 Proposition. Let AlwaysHalts
def
= {p | p is a program that always halts.}

Then AlwaysHalts is undecidable.

Proof. We show that if AlwaysHalts were decidable, then SelfHalt would be
decidable. So let us suppose, for the sake of contradiction that we had a
decision procedure DAlwaysHalts for membership in AlwaysHalts. With the help
of DAlwaysHalts, we can build a decision procedure D for membership in SelfHalt.

And now we use exactly the same D as we used in the proof of Proposition 28.3,
with the one exception that in the final step where we used DId in that proof, we use
DAlwaysHalts here. And we use exactly the same argument to argue that D returns
1 on an input w if and only if w ∈ SelfHalt.

305

28 SOME UNDECIDABLE LANGUAGES

This works because (i) when the inner program computes the identity function
(as we discussed in the first proof) that inner program is a program that always
halts, and so is in AlwaysHalts, and (ii) when the inner program loops on all
inputs, that inner program is a program that doesn’t always halt, and so is not
in AlwaysHalts. ///

28.2.4 The Emptiness and Non-Emptiness Problems

Consider the decision problem of determining whether a given program halts on
any of its inputs. Note that to say that a program p halts on no inputs is the same
as saying the pfn(p) is the empty function.

28.6 Proposition. The following language is undecidable.

NonEmp
def
= {p | pfn(p) 6= /0}

Proof. This is another result that—magically—submits to the same proof as the
two previous ones. We assume we have a decision procedure DNonEmp for
NonEmp, then on input w we build the same new program p, and observe
that determining whether p is in NonEmp is equivalent to determining whether
w ∈ SelfHalt . ///

By the way, since the decidable languages are closed under complement, we have
the following corollary.

28.7 Corollary. The following language is undecidable.

Emp
def
= {p | pfn(p) = /0}

Proof. If Emp were decidable, then its complement NonEmp would be decidable,
contradicting Proposition 28.6. ///

28.3 Reduction by Specialization

One of the easiest ways to do a reduction is to recognize that the problem you want
to prove undecidable is a more general version of a problem you already know to
be undecidable.

306

28 SOME UNDECIDABLE LANGUAGES

28.3.1 The Program Equivalence Problem

We will now prove that the following decision problem is undecidable.

Program Equivalence

INPUT: Two programs p1 and p2.

QUESTION: Does pfn(p1) = pfn(p2)?

To be consistent with the other results in the chapter we will phrase the result in
terms of a language.

28.8 Proposition. The following language is undecidable.

Equiv
def
= {〈p1, p2〉 | pfn(p1) = pfn(p2)}

Proof. Recall that we proved that the following language is undecidable.

Id
def
= {p | p is a program computing the identity function}

We now show that if Equiv were decidable, then Id would be decidable. So let us
suppose, for the sake of contradiction, that we had a decision procedure DEquiv for
membership in Equiv. With the help of DEquiv, we can build a decision procedure
D for membership in Id.

Let pid be the following program: on input x, return x .

With the help of pid we can build our D:

On input p, run DEquiv with p1 = p and p2 = pid , and return that
answer.

This is a decision procedure for Id, since to say that a program p computes the
identity function is precisely to say that it computes the same function as pid . Since
the existence of a decision procedure for Id is a contradiction, there cannot be a
program deciding Equiv. ///

307

28 SOME UNDECIDABLE LANGUAGES

28.4 Exercises

Exercise 193. Show that SelfAcc is undecidable, where

SelfAcc= {w | 〈w,w〉 ∈ Acc}
= {w | w ∈ L(w)}
= {w | w[w] ↓ 1}
= {w | pfn(w)(w) = 1}

Hint. This is just a simplification of the proof about the Acc, there are no new ideas.
Your job here is to write a careful proof: it will be a good exercise in keeping all
the self-referential things straight in your head.

Exercise 194. Consider a variation on the proof of the undecidability of the
Acceptance Problem, in which we keep everything the same except that we use
the following program to try to get our contradiction.

int main2 (p)
{
L: if (accTest(p,p)) /* if p accepts p */

while 1 do ; /* then loop forever */
else /* if p doesn’t accept p */

return(1); /* then return 1 */
}

Will this support a proof-by-contradiction as we did earlier? That is, if we assume
that accTest behaves as assumed, can we get a contradiction by reasoning
about this main2 program in exactly the same way as we did before, namely by
examining main2(main2)?

Exercise 195. Prove that the following problem is undecidable.

Program Inclusion

INPUT: Two programs p1 and p2.

QUESTION: Is L(p1)⊆ L(p2)?

Hint. You might proceed in a similar way as we did in Proposition 28.8, using a
different language as the “specializer.”

Alternatively, you could simply use the result of Proposition 28.8, and show that if
ProgramInclusion were decidable, then ProgramEquivalence would be as well.

308

28 SOME UNDECIDABLE LANGUAGES

Exercise 196. Show that the following problem is undecidable, assuming that the
CFG Universality problem is undecidable.

CFG Equality

INPUT: CFGs M1,M2

QUESTION: L(M1) = L(M2)?

Hint. Use the “specialization” trick.

Exercise 197. Show that the following problem is undecidable, assuming that the
CFG Universality problem is undecidable.

CFG Subset

INPUT: CFGs M1,M2

QUESTION: L(M1)⊆ L(M2)?

Give two proofs, one using the specialization trick, and the other using
Exercise 196

Exercise 198. Applying closure properties Let D be a decidable language and let
N be a language which is not decidable.

1. Suppose X is a language such that X = D∩N. Does it follow that X is
necessarily decidable? If so, say why. Does it follow that X is necessarily
non-decidable? If so, say why. If your answers to the two previous questions
was no, name a decidable D and non-decidable N satisfying X = D∩N with
X non-decidable, and name a decidable D and non-decidable N satisfying
X = D∩N with X decidable.

2. Suppose X is a language such that N = D∩ X . Does it follow that X is
necessarily decidable? If so, say why. Does it follow that X is necessarily
non-decidable? If so, say why. If your answers to the two previous questions
was no, name a decidable D and non-decidable N satisfying N = D∩X with
X non-decidable, and name a decidable D and non-decidable N satisfying
N = D∩X with X decidable.

3. Suppose X is a language such that D = N ∩ X . Does it follow that X is
necessarily decidable? If so, say why. Does it follow that X is necessarily
non-decidable? If so, say why. If your answers to the two previous questions
was no, name a decidable D and non-decidable N satisfying D = N∩X with
X non-decidable, and name a decidable D and non-decidable N satisfying
D = N∩X with X decidable.

309

28 SOME UNDECIDABLE LANGUAGES

4. Suppose X is a language such that D=X . Does it follow that X is necessarily
decidable? If so, say why. Does it follow that X is necessarily non-
decidable? If so, say why. If your answers to the two previous questions
was no, name a decidable D satisfying D = X with X non-decidable, and
name a decidable D satisfying D = X with X decidable.

5. Suppose X is a language such that N =X . Does it follow that X is necessarily
decidable? If so, say why. Does it follow that X is necessarily non-
decidable? If so, say why. If your answers to the two previous questions
was no, name a non-decidable N satisfying N = X with X non-decidable,
and name a non-decidable N satisfying N = X with X decidable.

310

29 RICE’S THEOREM

29 Rice’s Theorem

Problems like testing whether a program halts on an input may seem a bit artificial.
In practice we are much more likely to want to do things like

• testing whether a program meets its specification,

• testing whether certain code optimizations preserve the input/output behav-
ior of a program,

• testing whether two given programs compute the same function.

So a reasonable question at this point is whether the undecidability results and
techniques we have so far tell us anything about these situations. They do, in fact.
The news is bad, though.

In this section we prove a theorem about program properties, Rice’s Theorem.
This is a monster theorem which expresses the idea that any non-trivial functional
property of programs is undecidable.

First we have to say carefully what those words mean.

29.1 Functional Properties of Programs

Our goal is to show that any non-trivial functional property of programs is
undecidable. As noted earlier, we need to make sure this has a precise meaning.

• The way we capture the notion of property of programs mathematically is
to consider sets of programs. This is standard: the “property” of being red
can be identified with the set of red things in the world; the property of
being round can be identified with the set of round things in the world; the
“property” of being even can be identified with the set of even numbers.

• Non-trivial means that we have to be talking about a property that is
exhibited by some programs but not by others.

• The subtle aspect of the claim is the fact that we speak of properties of the
functions that programs compute rather than properties of programs (which
are strings) themselves.

311

29 RICE’S THEOREM

To appreciate the last point, note that there is typically no difficulty in deciding
properties of programs as text objects (for example, do they have even length? Are
they syntactically legal as C code? . . .). But these questions are not questions about
the behavior of the process that the code generates when run. It is this behavior
that is the subject of Rice’s Theorem.

So our first interesting job is to say mathematically what we mean when we say
when something is a functional property of programs.

29.2 Functional Sets

29.1 Definition. Let L be a set of strings, considered as programs. We say that L is
an functional set of programs if whenever two programs p and q compute the same
partial function, then p ∈ L if and only if q ∈ L.

So a set L will fail to be a functional set precisely if there exist programs p and q
compute the same partial function yet p ∈ L and q 6∈ L.

Another way to define the notion of functional set of programs is as follows. Let F
be a set of partial computable functions. Let L be the set of programs that compute
some function in F. Then L is a functional set of programs. And every functional
set of programs arises in this way.

We will allow ourselves to simply use the phrase “functional set” in this section.

For the sake of gaining intuition, let’s be informal for a minute and say that two
programs p and r are “sisters” if they compute the same partial function. Then to
say that L is functional is to say that when a program lies in L then all of its sisters
must be in L as well.

29.2 Examples. Each of the following sets of strings is a functional set of
programs.

1. The set of all programs computing the identity function. For example, the
program might reverse the input and then reverse it again, then print it out.
Or, of course the program might simply echo its input.

2. The set of all programs that compute the empty function, that is, that never
return an answer, on any input.

3. The set of programs that correctly perform prime factorization.

4. The set of all programs that return an answer on all inputs.

312

29 RICE’S THEOREM

5. The set of all programs that return an answer on input “010100”.

6. The set of programs computing increasing functions (with respect to
lexicographic order on strings).

In the first three examples above our functional set L was the set of all programs
computing a certain single function. In the latter three examples the functional set
L was the set of programs for a non-singleton set of functions.

29.2.1 A non-example

It is interesting to note that our fundamental undecidable problem SelfHalt does
not correspond to a functional set of programs.

The language SelfHalt = {p | p[p] ↓} is not a functional set of programs.
Intuitively, this because a program q being in SelfHalt or not has to do with whether
it accepts its own code as input, and there could easily be some other program that
accepts the things as q accepts, but doesn’t happen to accept itself.

For a concrete example, suppose q is a program that accepts all strings of even
length and no others. We may suppose that the program q itself has even length
(we could always add a blank character at the end of the program). Now let q′ be
a program also that accepts all strings of even length and not others, but take q′ to
have odd length (again, easy to arrange). Then q ∈ SelfHalt, but q′ 6∈ SelfHalt, yet
q and q′ compute the same partial function.

29.3 What do we mean by “non-trivial”?

Here are two rather dumb properties. But they are functional properties.

• L = /0, and

• L = Σ2
∗.

Let’s see that they are functional sets. Consider first L = /0. We just have to show
that it is impossible to have p and r computing the same function but with p ∈ /0

and r 6∈ /0. But obviously this is impossible since p ∈ /0 never happens for any p at
all! In the same way L = Σ∗2 is a functional set, simply because there can never be
any p which fails to be in L.

313

29 RICE’S THEOREM

29.3 Check Your Reading. Make sure you see the difference between (i) the set of
all programs that compute the empty function and (ii) the empty set of programs.

Make sure you see the difference between (i) the set of all programs that return an
answer on all inputs and (ii) the set of all programs.

29.4 The Theorem

We are now ready to state Rice’s Theorem, which addresses the question: when are
decision problems about programs decidable? There are two easy examples: the
sets /0 and Σ∗2 are certainly decidable languages. Rice Theorem says, amazingly,
that these are the only examples.

29.4 Theorem (Rice’s Theorem). Let L be a functional set of programs. Further
suppose that L is not the empty set, nor is L the set of all programs. Then L is not
decidable.

Proof. First, let p0 be the following program: ‘‘while true do ;’’. Cer-
tainly p0 computes the empty function.

Next, note that since a language is decidable if and only its complement is
decidable, it will do no harm to assume that L does not contain p0 (otherwise we
do the proof below on the language L and show it to be undecidable). Note that it
is just here that we have used the fact that it is not the set of all programs.

Now we can let p1 be some program in L whose function is not the empty function.
Note that it is just here that we have used the fact that L is not empty.

Summarizing the setup:

• p0 computes the empty function and is not in L

• p1 computes some non-empty function and is in L

Now, in the usual way, let us suppose, for the sake of contradiction that we had a
decision procedure DL for membership in L. With the help of DL, we can build a
decision procedure D for membership in SelfHalt. Here it is.

on input w,

1. build the following program p

314

29 RICE’S THEOREM

On input x:
simulate w on w;
simulate p1 on x

2. return DL[p].

We want now to show that D returns 1 on an input w if and only if w ∈ SelfHalt.

• Suppose w is in SelfHalt. Then the inner program p does the same things
as p1 does (after the initial simulation of w on w, which takes time, but will
halt, so this does not change the fact that the subsequent computation is just
that of p1). So the new program computes the same function as p1. This
means that the inner program is in L, since p1 ∈ L. And so DL[p] will return
1, which is to say that D returns 1.

• Suppose w is not in SelfHalt. Then on any input the new program will loop
forever. So the new program computes the empty function, that is, the same
function as p0. This means that the new program is not in L, since p0 /∈ L.
And so DL[p] will return 0, which is to say that D returns 0.

So there cannot be such a decision procedure DL for L, otherwise there would be a
decision procedure for SelfHalt . ///

Rice’s Theorem is an all-purpose tool for showing properties of programs
undecidable. In practice, the import of Rice’s Theorem is that if you are interested
in building a tool that will analyze programs in terms of their behavior, then your
tool is destined to be incomplete: you will always have to rely on heuristics and
approximations. By no means does it mean that you shouldn’t work on such tools,
they are important! It just means that you will never succeed perfectly.

29.5 Exercises

Exercise 199. For each language L below:

• say whether or not L is a functional set of programs

• say whether or not L is decidable

1. {p | 010 ∈ L(p)}.

2. {p | p has even length}

315

29 RICE’S THEOREM

3. {p | L(p) has at most 10 strings}.

4. {p | L(p) has at least 10 strings}.

5. {p | L(p) = Σ∗2}.

6. {p | L(p) 6= /0}.

7. {p | L(p) is regular}.

8. {p | p accepts p.}

9. {p | pfn(p) is the identity function}.

10. {p | pfn(p) is a constant function}.

11. {p | p is the shortest program computing pfn(p)}.

12. {p | L(p) = L(q)}, where q is a fixed program that returns 0 on odd length
strings and loops forever on even-length strings

13. /0.

14. {p | L(p) = /0}

15. {p | p halts on all inputs. }

16. {p | L(p) is semidecidable. }
(Sort of a trick question, mostly here to provide context for the next
question...)

17. {p | L(p) is decidable. }

18. {p | there is some shorter program q computing the same function as p.}

Exercise 200. To exercise your understanding of the proof of Rice’s Theorem, see
if you can pinpoint exactly which places in the proof we used the fact that L was a
functional set of programs (as opposed to some arbitrary set of programs).

316

30 SEMIDECIDABLE LANGUAGES

30 Semidecidable Languages

We can get a lot of insight into decidability, and especially a lot of insight
into certain undecidable problems, by widening our focus and looking into a
generalization of decidability.

Remember that a language K is decidable if it is L(p) for some decision procedure
p. Let’s relax that condition a bit.

30.1 Definition. A language L is semidecidable if it is L(p) for some program p.

The difference between decidable and semidecidable languages is the difference
between decision procedures and general programs. To be decidable is to to be the
language of a decision procedure. To be semidecidable is to to be the language of
any program at all.

To be more explicit:

L is semidecidable there is a program p such that, for all strings x,

x ∈ L implies p[x] ↓ 1

x 6∈ L implies either p[x] ↓ y, with y 6= 1, or p[x] ↑

The following observation is trivial but it is important enough that we call it a
theorem.

30.2 Theorem. If L is decidable then L is semidecidable.

Proof. Follows right from the definitions: just observe that every decision
procedure is a program. ///

The converse of this statement is not true: there are semidecidable languages
that are not decidable. We already know an example: the Halting Problem is
semidecidable. In fact it is in some sense the canonical example of a semidecidable
language.

30.3 Theorem. The Program Halting Problem is semidecidable.

Proof. Consider the following pseudocode.

317

30 SEMIDECIDABLE LANGUAGES

On input p and x:
Simulate p on input x;
If and when this simulation halts, return 1

Let h be a program that implements this pseudocode.

Then h semidecides the Halting Problem, since, if p halts on x, h[x] ↓ 1, while if p
doesn’t halt on x, h[x] does not return 1 (it happens that in fact h[x] loops forever
but that doesn’t matter here). ///

So now we know that semi decidability differs from decidability.

30.4 Corollary. Semidecidability does not imply decidability.

Proof. We showed earlier that the Halting Problem is not decidable. ///

Important!

If we ever say that a language A is semidecidable , this should not be taken to imply
that A is not decidable. If all one says is “A is semidecidable ” then this means “A
is semi-decidable; it may or may not also be decidable.”

Semidecidable Decision Problems

Semidecidability is a property of a language. But in the usual way, since decision
problems and languages are different ways to describe the same underlying idea,
we will often refer to a decision problem as being semidecidable, when what we
mean is that the associated language is a semidecidable language.

For example:

30.5 Example. The following problem is semidecidable.15

Halt On λ

INPUT: A C program p

QUESTION: Does p terminate normally on input λ?

15By the way, there is nothing in this example that depends on the input being the empty string,
we could have chosen any bitstring and had exactly the same argument.

318

30 SEMIDECIDABLE LANGUAGES

What we mean here is that the language

{p | p is a program that terminates normally on λ}

is a semidecidable language.

This amounts to the claim that one can write a program TermT st which halts with
success on input p if and only if p codes a program which would terminate on λ. To
emphasize: if given an input program p that does not halt normally on λ, TermT st
is allowed to return some answer other than 1 OR to not return and answer at all.

Here is simple pseudocode for such a semidecision procedure TermT st:

on input p;
(decode p as a program and) simulate p on λ;
if and when this simulation halts, return 1.

For emphasis, we note that if the program p does not terminate on input λ, our
program TermT st as we have described it will not halt on input p. This simply
means that the argument above is an argument for the semi-decidability of the
given problem, and does not count as an argument that the problem is decidable.

There is perhaps a danger in the above example that you may confuse TermT st
with the C program being tested. Don’t! TermT st is a program-testing program; it
processes any string you give to it.

In fact, Rice’s Theorem (Section 29) tells us that the Halt On λ problem is
undecidable. So this is another example of a problem that is semi-decidable but
not decidable.

30.6 Example. The language

{G | G is an ambigous context-free grammar}

is a semidecidable language.

This is what Example 26.8 showed.

Of course, for all we know based just on what we have proven so far, the problem
of testing that a CFG is ambiguous might actually be decidable; the argument in
Example 26.8 shows the weaker fact that it is semidecidable, but leaves open the
possibility that some other, more clever algorithm, could be written which would
be a decision procedure. As a matter of fact, though, this is not the case, as we will
prove later.

319

30 SEMIDECIDABLE LANGUAGES

The Dovetailing Trick

Before giving some less-obvious examples of semidecidability, we describe a
certain trick which we will use often. It is routine as a programming device but
it is worth describing carefully once and for all so that proofs that use it are clear.

Often we have two or more computations we want to simulate and combine in some
way. It might be that we have several (even infinitely many) programs that we want
to run on a string. It might be that we have several (even infinitely many) strings
that we want to run on a certain program on. Or it might be both: we have several
programs and several strings and we want to run each program on each string.

We need to be careful not to do these computations in sequence due to the fact that
one of them might not terminate, and so the others would get “starved” and we
couldn’t inspect them. The trick, of course, is to do the computations, intuitively,
in parallel. Our present job is to make that precise, without having to develop a
complex notion of how to implement processes or threads, but keeping to simple
programming intuitions.

If p is a program, x is an input string, and n is a natural number, let us agree that
there is a well-defined notion of running the computation p[x] for n steps. Though
nothing we do will really depend what exactly we count as a step, for concreteness,
let us assume that our programs have been compiled to some sort of assembly code,
and a “step” is the execution of one such instruction.

The construction The setting is: we have a sequence of programs p1, p2, . . . pk
and a sequence inputs x1,x2, . . . , and we would like to run them all is such a way
that no pi[xi] starves other computations from running, and each pi[xi] gets all the
number of steps it requires. There are finitely many programs; there can be either
finitely many or infinitely many inputs.16

When we refer to a “dovetailing” computation of p1, p2, . . . pk on inputs x1,x2, . . .
we mean the following. It is a (potentially infinite) computation that that runs in
stages. Specifically:

At each stage s,
run p1[x1], p1[x2], . . . , pk[xs] each for s steps,
or until it halts, whichever comes first.

16Actually it is not hard to tweak this technique to handle infinitely many programs. But it would
complicate the notation, and we almost never need that generality, so we skip it.

320

30 SEMIDECIDABLE LANGUAGES

Now, this is written so as to be maximally general, and not have special cases as
to whether there are finitely or infinitely many input strings. So let us agree that if
there are only finitely many, say n, strings that we care about then just ignore the
references to strings xn+1,xn+2, etc.

The key things to note are

• at each stage we only do finitely much computation, and yet

• for each program pi and for each string x j and for each number of steps n,
we do simulate pi[x j] for at least n steps (namely, at any stage s such that s is
as big as the maximum of i, j,n)

Here is an example of this technique in action.

30.7 Example (Program Non-Emptiness). Recall the question, “does a given
program p halt on any strings at all?” Note that to say that there exists an input that
program p halts on is the same as saying that pfn p is not the empty function.

Written as a decision problem

Program Non-emptiness

INPUT: a program p

QUESTION: is pfn p 6= /0?

Written as a language:

NonEmp
def
= {p | p is a program and pfn p 6= /0}

Proposition 28.6 we showed this to be to be undecidable. Here we show it to be
semidecidable. It will be an application of the dovetail trick (where we have only
one program, but infinitely many strings).

Proof. Here is a program that semi-decides NonEmp.

on input p;
Using dovetailing, consider each computation p[x1], p[x2], . . . p[xn] . . .
as xi ranges over all strings.

If and when any of these halts,
return 1

321

30 SEMIDECIDABLE LANGUAGES

If there are any strings x such that p[x] ↓ then the above procedure will discover
this, and return 1. If there are no strings x such that p[x] ↓ then the above procedure
will run forever.

That is, this program returns 1 on input p if and only if p ∈ NonEmp, as
desired. ///

30.1 Decidable versus Semidecidable

What’s the difference between semidecidable and decidable? We already observed
that if a language A is decidable then A is semidecidable.

The previous section showed that the converse is not true. But there is in fact an
interesting relationship between decidable and semidecidable. This is the content
of the next section.

30.1.1 Semidecidable plus Co-Semidecidable Implies Decidable

Complementation is at the heart of the difference between decidable and
semidecidable . First, an easy result.

30.8 Theorem. If A is decidable then A is decidable.

Proof. Let p be a decision procedure accepting A. Build program p′ as follows: p′

simulates p exactly, except that whenever p is ready to return 1, p′ returns 0, and
vice versa. We claim that L(p′) = A. This is because for any string w, w is accepted
by p if and only if w is rejected by p′ (note that the fact that p halts on all inputs
is used here!). That much shows that A is semidecidable ; but we have furthermore
that p′ halts on all inputs, just because p did. Therefore p′ is a decision procedure,
and therefore witnesses the decidability of A. ///

Note carefully that the program p must halt on all inputs in order for the
construction above to have the effect of complementing the accepted language.
If p didn’t halt on all inputs, the construction above wouldn’t work. This should
remind you of complementing DFAs (and how the simple technique there does not
work for NFAs).

Now we can state the most important fact relating decidable and semidecidable .

30.9 Theorem. A is decidable if and only if both A and A are semidecidable .

322

30 SEMIDECIDABLE LANGUAGES

Proof. Suppose A is decidable. Then certainly A is semidecidable . Furthermore
we have that A is decidable as well, by Theorem 30.8. This implies that A is
semidecidable . This proves the left-to-right direction of the theorem.

Now suppose that A is semidecidable and A is semidecidable . In order to show that
A is decidable we will build a program p which halts on all inputs and accepts A.
We have by hypothesis two programs p1 and p2 which accept A and A respectively.
Build p as follows:

On input w;
dovetail p1[w] and p2[w]
If p1 accepts w halt and return (1).
If p2 accepts w halt and return (0).

To see that p performs as required first note that it accepts the same strings as p1
and so L(p) is indeed A. We need to see that it returns 0 or 1 on all inputs: but
this follows from the fact that for any w, w is either in A or in A and so either p1 or
p2 will return 1 on w, which in turn will cause p to halt with the right answer on
w. ///

Some Languages Are Not Even Semidecidable

30.10 Example (Program Emptiness Reconsidered). Recall that Emp = {p |
p is a program with L(p) = /0} We showed that this language in not decidable, in
Section 28.2.4. (One could also use Rice’s Theorem to show this.)

But the complement of Emp is NonEmp, which we just showed to be semidecid-
able.

This implies that Emp is not only not decidable, it is not even semidecidable. Since:
if it were then, give that its complement NonEmp is semidecidable, that would
make Emp decidable! (For that matter, it would make NonEmp decidable too.)

This is a strange phenomenon. If you have a language X that you know to be
undecidable, then a way to show that X is even more complex, that is not even
semidecidable, is to show that the complement, X is semidecidable.

Finally, you might be wondering if things can be even worse than that, namely,
whether there can be languages X that are not semidecidable, yet whose
complements are not semidecidable either. The answer is yes, and in fact there
is a natural example: the language consisting of the always-halting programs. But
we don’t have the tools to prove that fact here.

323

30 SEMIDECIDABLE LANGUAGES

30.2 Closure Properties of the Semidecidable Languages

The semidecidable languages are closed under many set-theoretic operations, but
since semidecidable languages are accepted by programs which are not guaranteed
to halt, the proofs are more delicate than the ones for decidable languages.

Note that we already know one closure property that fails: complementation.
Namely, if language L is semidecidable then it is not necessarily true that L is
semidecidable.

The next theorem collects some results which are true, however.

30.11 Theorem. The semidecidable languages are closed under the operations of

1. intersection,

2. union,

3. concatenation, and

4. asterate (the star operation).

Proof. 1. Suppose A and B are semidecidable languages; we wish to show that
A∩B is semidecidable. Let pA be a program such that L(pA) is A, and let
pB be a program such that L(pB) is B. Our goal is to show that there exists a
program r such that L(r) is A∩B. We exhibit pseudocode for such a program
as follows:

on input w;
run pA on w;
run pB on w;
if each of these runs are accepting, then return (1), else return
(0).

To defend the claim that this program suffices we must argue that L(r) is
A∩B. Note that we are making no claims that r halts on all inputs! We only
need to establish that if w is indeed in both A and B then program r will halt
with return (1), and if w is not in both A and B then r will not halt with return
(1) (it may fail to halt or it may halt with a different return value). This is
clear from inspection of the code.

324

30 SEMIDECIDABLE LANGUAGES

2. Suppose A and B are semidecidable languages; we wish to show that A∪B
is semidecidable. Let pA be a program such that L(pA) is A, and let pB be a
program such that L(pB) is B. Our goal is to show that there exists a program
r such that L(r) is A∪B. Here we have to be clever. We cannot simply use the
same pseudocode as we did for the decidable-language case. The problem is
that if we run pA first on an input w then this might never return, yet w might
be in B, hence in A∪B, but we never get a chance to verify this. The solution
is easy though: we simply run dovetail pA and pB :

on input w;

dovetail pA[w] and pB[w] ;
if and when either of these runs halts with acceptance,
then return (1)

// If we get here we have failed...
return (0).

To defend the claim that this program suffices we must argue that L(r)
is A∪ B. This merely amounts to observing that r will halt accepting w
precisely if at least one of pA accepts w or pB accepts w.

3. Next is concatenation. Suppose A and B are semidecidable languages; we
wish to show that AB is semidecidable. Let pA be a program such that L(pA)
is A, and let pB be a program such that L(pB) is B. Our goal is to show that
there exists a program r such that L(r) is AB. We exhibit pseudocode for
such a program as follows:

on input w;

Using dovetailing, consider each pair of strings w1, w2
such that w1w2 = w:

run pA on w1;
run pB on w2;
if each of these runs are accepting, then return
(1)

// If we get here we have failed...
return (0).

To defend the claim that this program suffices we must argue that L(r) is AB.
But as in the decidable-language case the fact that L(r) is AB is straight from
the definition of concatenation: a string w is in AB if and only if there are
strings w1 ∈ A and w2 ∈ B such that w = w1w2.

325

30 SEMIDECIDABLE LANGUAGES

Note the need for dovetailing here. For any given pair w1,w2 such that
w = w1w2, we can test whether this pair witnesses w to be in AB by virtue
of having w1 ∈ A and w2 ∈ B without having to dovetail these tests. Since:
if the simulation of pA on w1 fails to halt then that’s fine, w1 6∈ A and we
don’t expect to “accept” this pair. But we need to be able to check all pairs
w1,w2 such that w = w1w2, without having some “bad” pair prevent us from
getting to test a potentially “good” pair. So we test all the ways that w might
be divide in two simultaneously.

4. Finally, for asterate. Suppose A is a semidecidable language; we wish to
show that A∗ is semidecidable. Let pA be a program such that L(pA) is A.
Our goal is to show that there exists a program r such that L(r) is A∗. We
exhibit pseudocode for such a program as follows:

on input w;
Using dovetailing, consider each sequence of strings w1,w2, . . .wn

such that w1w2 . . .wn = w:

run pA on w1;
run pA on w2;
. . .
run pA on wn;
if each of these runs are accepting, then return (1)

// If we get here we have failed...
return (0).

The argument that this suffices should by now be familiar to you. You should
note again the need for dovetailing for essentially the same reason as for the
case of concatenation.

///

Note carefully that we did not claim the result above that if A is semidecidable then
A is semidecidable. If it were true that whenever A were semidecidable then A were
semidecidable as well, then it would follow that whenever A is semidecidable then
in fact A is decidable. And that is certainly not true.

326

30 SEMIDECIDABLE LANGUAGES

30.3 Exercises

Exercise 201. In this exercise we will develop different proofs that the decidable
sets are closed under intersection and union. They are not better proofs than the
direct ones in the text, but they will be good proof-practice for you.

In the proofs below we will assume (only) that we have established the following
results

• X is decidable if and only if X is decidable.

• If A and B are semi-decidable then A∪B is semi-decidable.

• If A and B are semi-decidable then A∩B is semi-decidable.

1. To prove: If A and B are decidable then A∪B is decidable.

I’ve started the proof for you . . .

Proof. It suffices to show that (i) A∪B is semidecidable, and (ii) A∪B is
semidecidable.

To prove (i) : Since A and B are decidable, we have A and B are semi-
decidable. We have established that A∪B is semidecidable.

To prove (ii) : Since A and B are decidable, we have A and B are semi-
decidable. So . . . fill in the rest, . . . , playing a trick with DeMorgan’s
Laws. ///

2. To prove: If A and B are decidable then A∪B is decidable.

. . . use the same ideas a in the previous part . . .

Exercise 202. Let L1 and L2 be languages such that

(i) L1 and L2 are each semidecidable,

(ii) L1∪L2 = {0,1}∗, and

(iii) L1∩L2 = /0.

We know that this implies that both L1 and L2 are decidable.

1. Give a concrete example to show that if L1 and L2 satisfy (i) and (ii), but not
(iii), then L1 is not necessarily decidable.

327

30 SEMIDECIDABLE LANGUAGES

2. Give a concrete example to show that if L1 and L2 satisfy (i) and (iii), but not
(ii), then L1 is not necessarily decidable.

Exercise 203. Semidecidable partition Suppose L1,L2, . . .Lk are semidecidable
languages over the alphabet Σ2 such that

1. Li∩L j = /0 when i 6= j, and

2. L1∪L2∪ . . .Lk = Σ2
∗.

Prove that L1 is decidable. Indicate clearly how each of the hypotheses (1) and (2)
are used in your argument.

Hint. Think about the case k = 2, and the theorem that says that a language is
decidable if and only it it and its complement are semidecidable.

Exercise 204. Define K to be {p | for some input x, p[x] ↓ λ}. Show that K is
semidecidable.

Exercise 205. Taxonomy For each of the following situations, either give an
example of a language L fitting the description, or explain why the situation is
impossible.

1. L is decidable and L is decidable.

2. L is decidable and L is semidecidable but not decidable.

3. L is decidable and L is not semidecidable.

4. L is semidecidable but not decidable and L is decidable.

5. L is semidecidable but not decidable and L is semidecidable but not
decidable.

6. L is semidecidable but not decidable and L is not semidecidable.

7. L is not semidecidable and L is decidable.

8. L is not semidecidable and L is semidecidable but not decidable.

9. L is not semidecidable and L is not semidecidable.

328

30 SEMIDECIDABLE LANGUAGES

Exercise 206. Semidecidable splitting Suppose that L is semidecidable but not
decidable. (So L is not semidecidable...) Consider the language

L′ def
= {0x | x is in L}∪{1x | x is not in L}

Can you say for certain (without knowing more about L) whether L′ is decidable,
semidecidable, or non-semidecidable? Justify your answer.

Exercise 207. Semidecidable subset

1. Prove or disprove: If L is semidecidable and K ⊆ L then K is semidecidable.

2. Prove or disprove: If L is semidecidable and L⊆ K then K is semidecidable.

Exercise 208. Let X be decidable and let Y be semi-decidable but not decidable.
Define

• Z1 = X−Y

• Z2 = Y −X

1. Exactly one of Z1 or Z2 is guaranteed to be semi-decidable. Which is it?

2. For the Zi which is guaranteed to be semi-decidable, prove it. Here you may
quote without proof any closure properties you know.

3. For the Zi which is not guaranteed to be semi-decidable, give a decidable
language X and an semi-decidable language Y which demonstrate this.

329

31 ENUMERABILITY

31 Enumerability

Sometimes semidecidable languages are called recursively enumerable, especially
in older texts and papers. That term “recursively enumerable” seems odd given
our definitions. There does not seem to be anything being “enumerated” at
all. But an equivalent – and sometimes very convenient — characterization of
“semidecidable” clarifies things.

31.1 Definition. A program e enumerates a language A if, when executed with
an empty input string, it generates a sequence of strings comprising precisely the
elements of A.

For concreteness we may say that (i) the language A is defined over an alphabet not
including the newline character, and (ii) the elements of A are written to standard
output with newlines separating them.

It is not required that an enumerator generate the strings of A in any particular
order. It is also not required that an enumerator generate strings only once. That is,
an enumerator e for a language A may generate the same x from A many times. It
is only required that each element of A occur at least once in the output of e (and,
of course, that nothing not in A is output).

Note that an enumerator may halt after generating a finite number of strings; this
means that it enumerates a finite language. But an enumerator may never halt, that’s
fine as well. So it is possible to enumerate an infinite language. Note that even if
it doesn’t halt it may enumerate only a finite language (think about an enumerator
which prints the string “abracadabra” over and over again.)

31.1 Enumerability is Equivalent to Semidecidability

The main theorem of this section is that a language is semidecidable if and only
if it is enumerated by some program. (Hence the traditional name recursively
enumerable is not so dumb after all.)

31.2 Theorem. A language A ⊆ Σ∗2 is semidecidable if and only if there is a
computer program which enumerates A.

The other direction is slightly tricky. Suppose A is semidecidable, so that there is a
program p with L(p) = A. We seek a program e to generate a list of the elements of
A. The following idea almost works: under our standard enumeration of all strings
x0,x1,x2, . . . , consider each xi in turn as input to p. Whenever p accepts xi, add xi

to the output of e.

330

31 ENUMERABILITY

The trouble with idea, of course, is that if we are not careful we might get caught
in an infinite loop trying to decide whether p accepts some particular xi and never
get a chance to consider xi+1,xi+2, etc.

The trick is to run all the tests on all the xi using the dovetailing trick of Section 30.

Proof of the Theorem. For the “if” direction: Suppose there is a program e
enumerating A. Here is a program p that semi-decides e.

on input x;
start e and watch the output;
if and when x ever appears on the output of e, return (1).

For the other direction, suppose that p that semi-decides A. Here is a program e
which enumerates A. Let x0,x1, . . . be an enumeration of all the string in Σ∗2,

dovetail p[x0], p[x1], p[x2], . . . ;
if and when and xi is accepted by p, print(xi) and continue;

///

Note that for the enumeration program e we built in the second part, each x in A
actually is printed by e infinitely many times. What does the output of e look like
in the case that A is a finite set?

31.2 Exercises

Exercise 209. Enumerations without repetitions

Suppose that e is an enumerator for a language A. Show that there exists an
enumerator e for the same language A such that e prints each element of A exactly
once, that is, with no repetitions. Hint: you have unbounded memory at your
disposal!

As prelude to the next two questions, let us recall that, we can order the set Σ∗2 of
strings, for example, by simple alphabetical ordering with the empty string as w0,
the strings of length one coming next, the strings of length two after those, etc.
This naturally induces a linear ordering on strings, namely x < y if x comes before
y in the above ordering.

331

31 ENUMERABILITY

Exercise 210. Enumerations and decidability I

We know that if A is decidable then it is semidecidable, so that implies that if A is
decidable then there is an enumerator e for A. We might expect, though, that if A is
decidable then we can expect something extra nice about our enumerator. Indeed:
prove the following.

Theorem. Let A be decidable. Then there is an enumerator e which generates the
elements of A in increasing order. This is with respect to the standard ordering on
strings: shorter strings first, then use alphabetical order. The string “strictly” here
means that we do not allow repetitions.

Exercise 211. Enumerations and decidability II

Show the converse of the previous question. That is, prove the following.

Theorem. Suppose there is an enumerator e which generates the elements of A in
strictly increasing order. Then A is decidable.

Hint. First notice that if the language A of elements enumerated by e is finite, then
A is certainly decidable. So it remains to consider the case when A is infinite —
surprisingly, this makes things easier!

(As a matter of fact, the problem as stated is true even if we remove the word
“strictly” from the assumption, which is to say that we allow repetitions in the
enumeration. But focusing on strict enumeration makes the essential insight
clearer.)

Exercise 212. Consider the following claim.

If A1,A2, . . . is a countably infinite set of semidecidable languages, then their union
A1∪A2∪ . . . is a semidecidable language.

1. Show that this claim is false.

Hint. This is easy: remember that any singleton set is a semidecidable
language!

2. What is wrong with the following supposed “proof” of the claim?

Each A1 is semidecidable, so for each i there is a program pi such
that Ai is L(pi). Here is a program p such that L(p) is A1∪A2∪ . . .

on input x;
dovetail all the pi[x] ;
if and when any of the pi[x] return 1,
return 1.

332

31 ENUMERABILITY

This looks like a proof that A1 ∪ A2 ∪ . . . is semideciable. But we had a
counterexample in the previous part. What is going on? (The problem is not
that we are dovetailing infinitely many programs. That is a straightforward
generation of the finite-many-programs dovetailing technique.)

Hint. This is a subtle problem. If you have an easy explanation, it’s unlikely
to be correct.

333

32 ALWAYS-TERMINATING PROGRAMS CAN’T BE ENUMERATED

32 Always-Terminating Programs Can’t be Enumerated

At this point one can imagine someone making the following complaint.

All this stuff about programs halting is fine, but in real life we
don’t really care about programs which don’t halt. I want a
theory of computability which takes always-halting programs as the
fundamental objects of study, and investigates these directly.

This is a perfectly reasonable point of view. There is one problem, though. It
is impossible to carry out such a research plan. The reason for that is that it is
impossible to recognize these programs! That is, the set of programs which always
halt is not only not a decidable language, it is not even semidecidable.

32.1 Definition. A program p is terminating if it halts on all inputs.

Equivalently, program p is terminating if its associated partial function pfn(p) has
domain all of Σ∗2.

This is a potentially confusing terminology, since in other contexts, “terminating”
can be used to refer to a particular computation, whereas here we apply the term to
a program if all of its computations terminate.

We are going to show that not only is there no decision procedure to answer
whether or not an arbitrary program is terminating, there cannot even be an
algorithmic way of listing all of the terminating programs. The argument for this
is illuminating: it gives a bit more insight into what is going on with the self-
referential aspect of the proof that the halting problem is not decidable.

32.2 Theorem. The following problem is not semi-decidable.

Termination

INPUT: A program p

QUESTION: Is p terminating; that is, does p halt on all inputs?

Another way to state the Theorem is as follows.

Term= {p | p halts on all inputs } is not semidecidable.

334

32 ALWAYS-TERMINATING PROGRAMS CAN’T BE ENUMERATED

Proof. Recall that a language A is semidecidable iff there is an effective
enumeration of A. So suppose for the sake of contradiction that there were a
computer program DecList which generates a list

t0, t1, t2, . . .

such that every ti is in Term and every program in Term occurs at least once in the
list.

Recall that we have a specified an enumeration of all ΣA strings as x0,x1,x2,
Now construct the following program t∗.

on input x;
let i be the first number such that xi is x;
using DecList, generate ti and simulate it on xi;
let y be the result of this computation; return y1 (the result of appending
1 to the end)

The main point is that the result of t∗ on xi differs from the result of ti on xi. Note
that this implies that t∗ computes a different function from each one of the ti (for
example t∗ doesn’t compute the same function as t173 because they differ at least
on input x173).

But the description above does defines a program, because we have assumed that
we can generate the ith terminating program for any i, and once it is generated we
can proceed to simulate it.

Furthermore, the program t∗ we’ve defined is itself terminating. This is because
each ti is guaranteed to be terminating, so the tests in the code above always return.

But this is a contradiction: since t∗ does not compute the same function as any of
the ti, our original listing was not complete after all.

///

335

33 REDUCIBILITY

33 Reducibility

We have done several proofs structured as follows. To show some language X
to be undecidable, we (i) first dreamed up some langage U that we knew to be
undecidable, then (ii) gave an argument if if X were decidable then U would be
decidable. This contradiction establishes that X cannot be decidable after all.

This kind of reasoning can be formalized, and in doing so we get good insight into
the structure of all possible languages. In this section we give the beginnings of
such a formalization.

The technique is called reducibility.

33.1 Definition. A language A is m-reducible to language B, written A �m B, if
there is a computable terminating function f : Σ∗2→ Σ∗2 such that for every w,

w ∈ A if and only if f (w) ∈ B

33.2 Example. For any language A we have A�m AR. The function is simply this:

f (x) def
= xR

It is clear that f is terminating and computable, and that x ∈ A if and only if
f (x) ∈ AR.

33.3 Example. Let A = {w | |w| is even}, let B = {w | |w| is odd}. Then A �m B.
Here is a f that works: f (x) = x1. [that is, append a “1”]

33.4 Example. Let A = {anbncn | n≥ 0}, let B = {a2nbn | n≥ 0}. Then A �m B.
Here is a reduction function f that works:
f (x) = the result of (i) removing all the cs in x, and (ii) replacing each a by a aa

33.5 Check Your Reading. Show that in Example 33.4 we also have B �m A.
(This is not typical!)

The next easy observation is the crucial fact about reducibility. It is our universal
tool for proving things undecidable.

33.6 Theorem. Suppose A is m-reducible to B. If B is decidable then A is
decidable.

Proof. Suppose that A �m B via function f ; let p f be a program that computes f .
Now let p be a program that halts on all inputs and decides B. The the following is
a program that halts on all inputs and decides A:

336

33 REDUCIBILITY

on input w:
compute p f [w]; run p on the result
(return that answer)

This halts on all w since f are p f are terminating . And it decides A by definition
of the fact that f reduces A to B. ///

A couple of notes:

• it is crucial in the above proof that the function f be terminating , i.e. that
p f always returns, otherwise we would not be able to make our decision
procedure for A apply to all inputs.

• it is crucial in the above proof that the function f be computable, since we
had to build a program for deciding membership in A by passing to B.

The following is immediate from the theorem.

33.7 Corollary. Suppose A is m-reducible to B. If A is undecidable then B is
undecidable.

Corollary 33.7 is an invaluable tool for showing languages to be undecidable.

33.8 Example. Here is a silly example; silly because it is not a decision problem
that anyone would care about, but worth seeing as a hint of how to use reducibility
to show things undecidable. More significant examples will come soon.

Consider the language SelfHaltR, the set of reversals of strings in SelfHalt.
(Remember that SelfHalt, defined as {p | p[p] ↓}, is an undecidable language.)
The language SelfHaltR is clearly undecidable; here is what a proof based on
reducibility looks like.

Proof. To show that the set SelfHaltR is undecidable it suffices—by Theorem 33.6—
to prove SelfHalt �m SelfHaltR. For that it suffices to construct a computable ter-
minating function f with x ∈ SelfHalt if and only if f (x) ∈ SelfHaltR. We define
f by: f (x) = xR. ///

More generally

33.9 Example. For any A, A is undecidable if and only if AR is undecidable.

Since: If A is undecidable then A �m AR shows that AR is undecidable. If AR is
undecidable then AR �m (AR)R = A shows that A is undecidable.

337

33 REDUCIBILITY

33.10 Example. Let A be decidable and let B be any language which is not /0 and
which is not Σ∗2. Then A�m B.

Note that we do not assume anything about the decidability of B.

Proof. Let p be an algorithm deciding membership in A; let z1 be some string in B
and let z0 be some string not in B. The following is an algorithm for a computable
function reducing A to B.

on input x;
if p[x] returns 1 return z1 else return z0

Clearly this function is terminating and computable, since p is always-
terminating. ///

This is a dangerous example! It might encourage a misconception about how
reductions can be defined. We’ve already stressed this point (in an earlier
“Caution!”) but let’s be clear: don’t let that test for membership in A suggest that
you can do that whenever you are trying to define a reduction. In most interesting
situations, the reduction function f has to be defined without any knowledge of A,
because f has to be computable. This is a very special case, when A is decidable.

33.1 Reducibility and Semidecidability

In fact we can use reducibility to tell us things about semidecidability as well.

33.11 Theorem. Suppose A is m-reducible to B. If B is semidecidable then A is
semidecidable.

Proof. Suppose that A �m B via function f ; let p f be a program that computes f .
Now let p be a program with the property that x ∈ B iff p[x] ↓ 1. The the following
is a program q has the property that w ∈ A iff q[w] ↓ 1.

on input w:
compute p f [w]; run p on the result
(return that answer)

Yes, that’s the same code as in the proof of Theorem 33.6. This time the program
doesn’t necessarily halt on all w, but we don’t need that this time. If w ∈ A then
p f [w] will be in B, and so p will return 1; while if w /∈ A then p f [w] will be not be
in B, and so p will either loop forever or return something other than 1. So we have
shown A to be semidecidable. ///

338

33 REDUCIBILITY

The following is immediate from the theorem.

33.12 Corollary. Suppose A is m-reducible to B. If A is not semidecidable then B
is not semidecidable.

33.2 Two Potential Gotchas

The direction of the reduction matters. Suppose you have A�m B. If you know
that A is decidable, then you can conclude nothing about whether B is decidable
or not. Similarly if you know B to be undecidable, you know nothing about the
decidability of A.

The reduction function must be terminating and computable If you are asked
to prove A is reducible to B you must avoid the temptation to let your reduction
function f make reference to membership in A, except for the uninteresting special
case when A is decidable. In all interesting situations, the reduction function f has
to be defined without any knowledge of A, because f has to be computable.

To put this more concretely: if you are trying to prove A�m B then you cannot say
something like, “the definition f on input x is: if x ∈ A then [blah, blah . . .] but if
x /∈ A then [blah, blah, blah . . .]”. This pseudocode will be bogus unless you know
A is decidable!

33.3 Transitivity of �m

This result is easy but it is used constantly.

33.13 Lemma. Suppose A�m B and B�m C. Then A�m C.

Proof. Let f witness A�m B and let g witness B�m C. Claim: the function (g◦ f)
witnesses A�m C.

Since: (g ◦ f) is certainly computable since it is the composition of computable
functions. Now for any w, if w ∈ A then f (w) ∈ B and so g(f (w)) ∈ C;
furthermore if w /∈ A then f (w) /∈ B and so g(f (w)) /∈ C. This show that w ∈ A
iff (g◦ f)(w) ∈C. ///

339

33 REDUCIBILITY

33.4 The Acceptance Problem Revisited

Recall this decision problem:

Program-Acceptance

INPUT: A program p and an input x

QUESTION: Does p accept x?

Here is Acc, the language corresponding to this decision problem:

Acc
def
= {〈p,x〉 | program p accepts input x.}

We showed earlier by a direct argument that this language is not decidable.

With the technique of reducibility at our disposal, we can show a strong connection
between the Halting Problem and the Acceptance Problem.

33.14 Theorem. Halt�m Acc and Acc�m Halt.

Proof. We show the first and leave the second as an exercise (Exercise 215).

For the first: we construct a computable terminating function f witnessing
Halt �m Acc. The subtlety is that we will be building a function f that returns
strings that we will take seriously as programs and inputs. Roughly speaking, the
function f involves a program transformer.

The key idea is to note that if p is any program then we can build a related program
make-acc(p) that behaves as follows:

on any input y,
make-acc(p) simulates p on y,
if p halts on y, then make-acc(p) returns 1 (no matter what p returned).

That is:

p(y) (make-acc(p))(y)
halt and acc acc
halt and rej acc

loop loop

340

33 REDUCIBILITY

Of course if p fails to halt on y then make-acc(p) will fail to halt as well, since we
are just simulating. But in any event it should be clear that if we are given code for
p we can build code for make-acc(p).

So here is the definition of the function f : on input of the form 〈p,y〉 return
〈make-acc(p),y〉. On strings not of the form 〈p,y〉, f is the identity.

f (w) =
{
〈make-acc(p),x〉 if w is of the form 〈p,x〉
w otherwise

Clearly f is a computable terminating function. To see that it witnesses
Halt�m Acc we just observe that for any w

w ∈ Halt if and only if f (w) ∈ Acc

Thus Halt�m Acc via f . ///

33.5 Why the Acceptance Problem is Special

An informal way to describe the next result is that it shows that the Acceptance
Problem is a “hardest” semidecidable problem: everything semidecidable reduces
to it.

Anyway, we will prove directly in this section that if A is any semidecidable
language then A�m Acc. Since Acc�m Halt it will also follow that A�m Halt; but
it is easier to prove A�m Acc.

The proof is embarrassingly simple.

33.15 Theorem. Let A be semidecidable. Then A�m Acc.

Proof. Let p be a program with L(p) = A. Define the reduction function f to be
defined simply as

f (x) = 〈p,x〉
It is clear that f is terminating and computable, and that x ∈ A if and only if
f (x) = 〈p,x〉 ∈ Acc ///

Another title for this section could be: why the Halting problem is special. Here’s
why. Since Acc �m Halt, we conclude immediately that for every semidecidable
language A, we have A �m Halt . It just so happens that the proof goes through
more smoothly if one uses that Acceptance Problem as the thing to be reduced to
directly. But the phrase “The Halting Problem” has become a catch-phrase and
indeed it is standard to hear people say that “any semidecidabale language can be
reduced to the Halting Problem”.

341

33 REDUCIBILITY

By the way, if you are familiar with the complexity class NP and the notion of
NP-completeness, please observe that Theorem 33.15 says that the language Acc
is “semidecidable complete” in exactly the same sense that we speak of a language
being NP-complete. The notion of “semidecidable complete” came first, though,
in the 1930’s!

33.6 Emptiness Is Not Semidecidable

That result about Program NonEmptiness now gives us more information about
Program Emptiness.

33.16 Theorem. Emp is not semidecidable.

Proof. We have seen that the complement of Emp, namely, NonEmp
def
= {p |

dom(pfn(p)) 6= /0}, is semidecidable. So if Emp were semidecidable, we could
conclude that it was actually decidable, using the fundamental fact (Theorem 30.9)
relating decidable and semidecidable. ///

33.7 Reducibility for Complexity

The notion of reducibility, first formulated for studying undecidability as we use
it here, can be adapted to study computational complexity as well. One defines a
variant of reducibility in which the reducing function is required to be efficiently
computable. Just as reducibility is the standard technique for showing problems to
be decidable or undecidable, this refined notion of reducibility is the most common
technique for establishing complexity results. You can read more about this in any
textbook about complexity.

33.8 Exercises

Exercise 213. Prove that the following language is not decidable.

{0p | p ∈ SelfHalt}

This is the set of all programs in SelfHalt but with the single character “0”
prepended to each one.

Exercise 214. These are about reading the definition of �m carefully.

342

33 REDUCIBILITY

1. Suppose A�m /0. What can you say about A? Prove your answer.

2. Suppose A�m Σ∗2. What can you say about A? Prove your answer.

3. Suppose /0�m A. What can you say about A? Prove your answer.

4. Suppose Σ∗2 �m A. What can you say about A? Prove your answer.

Exercise 215. Finish the proof of Theorem 33.14, by showing Acc�m Halt.

Exercise 216. Prove or disprove: For all A and B, A�m (A∩B)

Exercise 217. The relation �m is almost a partial order. We proved that it is
transitive.

1. Prove that �m is reflexive: we always have A�m A

2. Show by example that �m is not anti-symmetric: A �m B and B �m A does
not imply A = B.

This last is the sense in which �m is not a partial order; relations that are reflexive
and transitive but not necessarily anti-symmetric are called “preorders”.

Exercise 218. Prove that If A�m B then A�m B. (super easy.)

Exercise 219. Suppose A is semidecidable and A�m A. Prove that A is decidable.

Exercise 220. Consider the question: is it true that for every A we have A �m A?
That seems like a reasonable conjecture. But it’s always good to test things on the
“extreme” cases... so let’s consider A = /0. Oops, we see that /0 �m Σ∗2 is pretty
obviously false.

But that isn’t very satisfying, the empty set might be a special degenerate case. So
let’s now consider the more refined conjecture: if A 6= /0 and A 6= Σ∗2 then we have
A�m A.

Show that this fails. Hint. Recall Exercise 219

Exercise 221. Let Odd be the set of all bit strings of odd length. Show that
Odd �m SelfHalt

Hint. Remember that we emphasized that (in general) in proving X �m Y for some
languages X and Y by building a function f , we couldn’t necessarily let f test
whether its input is in X , since f has to be computable.

The trick in this exercise is to realize that since we are working with Odd, clearly
a decidable language, our function f to reduce Odd to SelfHalt can, if we wish,
involve a test for membership in Odd.

343

33 REDUCIBILITY

Exercise 222. Let A be any language; then let Aodd be the set all odd length strings
in A. Prove that if Aodd is not decidable then A is not decidable.

Hint. You need a little observation to start: explain why there must be at least one
string w not in A. Then this w will be handy in the rest of the proof.

Exercise 223. This exercise is here mainly to be useful in exercise 224

Construct a language X such that

• X is undecidable, and

• every string in X has odd length.

Hint. You can start your proof by saying, “Let Y be any undecidable language.
Now do a little construction based on Y that gives you a set X of odd-length strings
with Y �m X .

Exercise 224. Prove or disprove: If A is not decidable then Aodd is not decidable.
(Compare Exercise 222)

Exercise 225. Prove that the following language is not decidable.

2SelfHalt= {pp | p ∈ SelfHalt}

Note that 2SelfHalt is not the same as the concatenation SelfHaltSelfHalt

Exercise 226. For any A, define

2A = {xx | x ∈ A}

Note that 2A is not the same as the concatenation AA

1. Prove that for any A we have A�m 2A.

2. Explain why it is not true that 2Σ∗2 �m Σ∗2

3. Prove that if A 6= Σ∗2 we have 2A�m A.

Hint. You will need to identify a particular element w0 known to not be in A.

Exercise 227. An interesting contrast to exercise 226. Do we always have
A�m AA? The answer is no. In fact it is possible to have

• A undecidable, but

344

33 REDUCIBILITY

• AA decidable

Give an example.

Exercise 228. Give a direct proof of the fact that for any semidecidable language
A, A�m Halt.

As we noted, this follows from the facts that A �m Acc and Acc �m Halt but it is
good practice for you to construct a reduction function directly.

345

34 POST’S CORRESPONDENCE PROBLEM

34 Post’s Correspondence Problem

Here is a puzzle. Consider the following “dominos”, which are just pairs of bit
strings that we have chosen to write one on top of the other.(

1
111

) (
10111

10

) (
10
0

)
The puzzle is: supposing you have as many copies of each domino as you like, can
you lay them side-by-side so that the bit string made from the top row is the same
as the bit string made from the bottom row?

The answer—in this case—is yes. If we concatenate copies of the second, the first,
the first again, then the third, we get(

10111
10

)(
1

111

)(
1

111

)(
10
0

)
You can check that the first row and the second both make the string 101111110.

34.1 Examples

34.1 Example. Here is another such problem. We take our dominos to be(
1

111

) (
10

10111

) (
10
00

)
Can we arrange these side-by-side, so that the bit string made from the top row is
the same as the bit string made from the bottom row?

Certainly not. Whenever we use any of the first two dominos, the lower bit string is
longer than the upper one. And we can’t just use copies of the third domino, since
the first bits in the upper and lower halves are different. So the top can never catch
up to the bottom.

34.2 Example. Suppose our dominos are(
100
11

) (
10

1011

) (
010
011

)
Is there a solution?

346

34 POST’S CORRESPONDENCE PROBLEM

The answer here is again no. One way to see this is that a necessary condition
for a PCP instance to have a solution is that at least one of the dominos has one
string that is a prefix if the other (you have to start with such a domino). It’s also
necessary that at least one of the dominos has one string that is a postfix of the
other (you have to end with such a domino). The above problem pases the first test
but not the second.

34.3 Example. One more example. Suppose our dominos are(
0
1

) (
1

011

) (
011
0

)
Is there a solution? Swing away from these notes for a little while and try to find
one. . .

. . . You’re back? If you didn’t find one did you come away with the impression that
there couldn’t be one? Well, there is a solution, but you need to string together 44
dominos, and that is the shortest solution.17

We have been playing with the Post Correspondence Problem, invented by the
mathematician Emil Post in 1946. We can phrase the problem as a decision
problem, namely, given a set of dominos, decide, yes or no, whether or not there
exists a way to arrange them side-by-side so that the bit string made from the top
row is the same as the bit string made from the bottom row.

Let’s make all this precise, by defining a decision problem. Our previous examples
have all been over bitstrings. But the problem makes sense over any alphabet Σ,
and it is sometimes convenient to use other alphabets, so we build that generality
into the definition.

Post’s Correspondence Problem

INPUT: An alphabet Σ and a list
(x1

y1

)
, . . . ,

(xn
yn

)
of ordered pairs of

elements of Σ∗

QUESTION: Does there exist a sequence s = i1, . . . , im with 1≤ i j ≤ n
for all i,

xi1 · · ·xim = yi1 · · ·yim

The Post’s Correspondence Problem is often abbreviated PCP.

17Here and elsewhere is this section I am relying on the work of Ling Zhao, who has the excellent
website http://webdocs.cs.ualberta.ca/˜games/PCP

347

http://webdocs.cs.ualberta.ca/~games/PCP

34 POST’S CORRESPONDENCE PROBLEM

34.2 Undecidability of PCP

34.4 Theorem. Post’s Correspondence Problem is undecidable.

Proof. (Idea) One gives a complex construction that shows that, if one had a
decision procedure for the PCP, one could use it as a subroutine to give a decision
procedure for the Halting Problem. The proof is facilitated by working with the
Halting Problem for Turing machines, as opposed to the Halting Problem for
programs. So the proof also depends on the fact that any program can be captured
by a Turing machine. ///

Needless to say, the fact that PCP is undecidable as a decision problem does not
mean that one cannot analyze individual instances, or even certain families of
instances. In this set of problems you will play with some PCP instances, develop
some intuition for the general problem, and prove a few results about special cases.

34.3 Exercises

Exercise 229. (Warm Up) For each instance of the PCP below, either give a
solution or argue why no solution exists.

1. (
abc
ab

)(
aca
ca

)(
b

acab

)
2. (

abc
ab

)(
abba

c

)(
c

ccc

)(
bbba
cbbb

)(
abcc
aab

)
3. (

c
cb

)(
b

aba

)(
a

bab

)(
aba
b

)(
bab
a

)
4. (

ab
a

)(
aa
bab

)(
b
aa

)(
ba
ab

)
Exercise 230. Show that is a PCP instance P has a solution, then it has infinitely
many solutions. (This is easy)

348

34 POST’S CORRESPONDENCE PROBLEM

Exercise 231. True or false: a necessary condition for a PCP instance to have
a solution is that there be one domino whose top string is longer than its bottom
string and another domino whose bottom string is longer than its top string. (Ignore
trivially solvable PCP instances in which some domino has identical top and
bottom strings.)

Exercise 232. Show that for the purposes of investigating which PCP problems
have solutions we may without loss of generality restrict attent to the alphabet
{0,1}. Specifically, show that we can algorithmically transform any PCP problem
P over an arbitrary (finite of course) alphabet Σ into a problem P′ over the alphabet
{0,1} such that P′ has a solution if and only if P has a solution. You can do this
without changing the number of dominos defining the problem.

Exercise 233. Show that the PCP is decidable if the alphabet has only one symbol.
(Give pseudocode for a decision procedure.)

Exercise 234. Fix the alphabet Σ = {0,1}, and consider PCP instances over this
alphabet.

Let us say that the “total size” of a PCP instance is the sum of the lengths of all
the strings appearing in the dominos. If a string appears in several places, count its
length that many times.

Convince yourself that for each n there are only finitely many different PCP
instances of total size n. (Easy.)

Now, if P is a solvable PCP instance, let l(P) be the length of a shortest
solution: the length of the sequence s described in the definition of the PCP. Let
bound : N→ N be the following function.

bound(n) def
= the largest value of l(P) among all the solvable PCP instances of length n

Note that f is well-defined because there are only finitely many instances of size
n, and consequently only finitely many solvable instances.

Prove that bound is not a total computable function.

Exercise 235. (Hard.) Show that the subclass of PCP instances that have only 2
dominos is decidable. (Give pseudocode for a decision procedure.)

Feel free to use the result of Exercise 232

By the way, it is known that the subclass of PCP instances with 5 or more dominos
is undecidable. Decidability is unknown for k = 3 or 4.

This is a hard problem. It was first proved in [EKR82]

349

35 UNDECIDABILITY RESULTS ABOUT CONTEXT-FREE GRAMMARS

35 Undecidability Results about Context-Free Grammars

35.1 PCP meets CFG

If P is an instance of the PCP there are two context-free grammars easily derived
from P, which we will call GT and GB. The T and B are for “top” and “bottom”.

Each of GT and GB are CFGs with terminal alphabet Σ∪{d1,d2, . . . ,dn}, where Σ

is the alphabet the PCP is defined over and the di are fresh alphabet symbols (one
corresponding to each domino).

Each of GT and GB will have a single variable (which is of course their start
variable): for GT this variable is ST and for GB this variable is SB.

Suppose P has dominos
(x1

y1

)
, . . . ,

(xn
yn

)
over alphabet Σ. Here are the rules for GT .

ST → x1 ST d1 | x1d1

...

ST → xn ST dn | xndn

The rules for GB are similar

SB → y1 SB d1 | y1d1

...

SB → yn SB dn | yndn

The idea is that the grammar GT generates precisely the strings across the top that
could be generated by playing dominos from P, together with a record (the di) of
which dominos were played . Of course this record has to be read backwards, but
that won’t matter.

And of course the grammar GB generates precisely the strings across the bottom
that could be generated by playing dominos.

Please note that the grammars GT and GB depend on which PCP instance we started
with, so we should really show that in the notation, and call them something like
GP

T and GP
B , but that’s ugly, so we won’t do it. Just keep in mind that whenever we

speak of a GT or GB we always have a specific PCP instance in the background.

35.1 Check Your Reading. Pick a PCP instance and write down the grammars.
Play some dominos. Then write down the derivation in GT and the derivation in
GB that correspond to that play.

350

35 UNDECIDABILITY RESULTS ABOUT CONTEXT-FREE GRAMMARS

Here’s a little technical point we need in Section 35.3.

35.2 Lemma. For every PCP instance P, the grammars GT and GB are
unambiguous.

Proof. This is easy to see. The strings derivable in either grammar are all of the
form

z dim · · ·di1

where z is some string over the PCP alphabet and the di are characters unique to
each rule. The only way to generate d j in the output is to apply the jth rule, and
the order of the ds says exactly what the order of the rules applied were. So two
different derivations cannot generate the same string. This observation applies to
both GT and GB. ///

We know that it is not the case that every context-free language has a context-free
complement. But the grammars GT and GB happen to always generate languages
whose complement is context-free. We will use this fact in Section 35.4.

35.3 Lemma. For every PCP instance P, we can construct grammars G′T and G′B
that generate the complements of the languages L(GT) and L(GB).

Proof. This is somewhat tricky, and we don’t give the proof here. A proof (using
pushdown automata) can be found in [HMU06]. ///

The point to defining GT and GB is that they make a connection between the world
of PCP and the world of grammars, which we will exploit in the next few sections.

35.2 Context-Free Language Intersection

Here we show that it is undecidable whether two given context-free grammars
generate any strings in common.

35.4 Lemma. Let P be a PCP instance. Then P has a solution if and only if
L(GT)∩L(GB) 6= /0.

351

35 UNDECIDABILITY RESULTS ABOUT CONTEXT-FREE GRAMMARS

Proof. If P has a solution, this means that there is a sequence s = i1, . . . , im with

xi1 · · ·xim = yi1 · · ·yim

But if xi1 · · ·xim is the top string generated by the play i1, . . . , im, then GT generates
the string

xi1 · · ·xim dim · · ·di1

Similarly, GB generates the string

yi1 · · ·yim dim · · ·di1

And if xi1 · · ·xim = yi1 · · ·yim (that’s what it means to have a solution to the PCP!)
those two generated strings are equal.

Conversely, the only way there could be a string generated by both grammars is for
it to represent a winning play in the PCP game. This is essentially because every
string generated by either grammar loks like z dim · · ·di1 where the sequence of ds
records a play of dominos. ///

Now we get an undecidability result immediately.

35.5 Theorem. The following problem is undecidable.

Context-Free Grammar Intersection

INPUT: Context-Free Grammars G1 and G2

QUESTION: Is L(G1)∩L(G2) 6= /0 ?

Proof. For sake of contradiction, suppose there were a decision procedure D∩
for this problem. Then the following would be a decision procedure for the Post
Correspondence Problem.

- Given instance P of the PCP;

- Build GT and GB from P;

- Call D∩ on these two grammars;

- If D∩ returns YES, return YES, else return NO

The fact that this would be a correct decision procedure for the PCP is a
consequence of Lemma 35.4. Since there can be no decision procedure for the PCP,
this contradiction shows that there can be no decision procedure for the Context-
Free Grammar Intersection problem. ///

352

35 UNDECIDABILITY RESULTS ABOUT CONTEXT-FREE GRAMMARS

35.3 Context-Free Grammar Ambiguity

Here we show that it is undecidable whether a given context-free grammar is
ambiguous.

Let P be a PCP instance. We create another grammar GA from P. This time we
start with GT and GB derived from P as before, but now combine them into one
grammar that generates the union of their languages. Namely, add one new variable
S, and add

S → ST | SB

to the productions for GT and GB.

What strings are generated by GA? Precisely those strings

a1a2 . . .akdim · · ·di1 // here the a j are Σ-symbols

such that, if the dominos are played according to the sequence di1 · · ·dim , then
a1a2 . . .ak is either the string along the top or the string along the bottom. This
is because the first step in the derivation of a1a2 . . .akdim · · ·di1 has to be either
S =⇒ ST or S =⇒ SB, and once that move is made we can only apply rules that
originated from GT or GB respectively.

35.6 Lemma. Let P be a PCP instance. Then P has a solution if and only if the
grammar GA is ambiguous.

Proof. If P has a solution, this means that there is a sequence s = i1, . . . , im with

xi1 · · ·xim = yi1 · · ·yim

Just as in Lemma 35.4 this means that GT generates the string

xi1 · · ·xim dim · · ·di1

and GB generates the string

yi1 · · ·yim dim · · ·di1

As we noted before, these are the same string, since xi1 · · ·xim = yi1 · · ·yim . This
string has two parse trees in GA, one that has the step S =⇒ ST and the start and
one that has S =⇒ SB at the start.

We need to show the converse, that if GA is ambiguous then P has a solution. This
is where we need the observation that each of GT and GB are unambiguous on their
own. Given that, the only way for a string w to have two parse trees in GA is for the
first steps to be different, that is, to have S =⇒ ST =⇒∗ w and also S =⇒ SB =⇒∗ w.
But as we argued in the proof of Lemma 35.4 this means that P has a solution. ///

353

35 UNDECIDABILITY RESULTS ABOUT CONTEXT-FREE GRAMMARS

The proof of the next theorem follows the same pattern as the proof of
Theorem 35.5. We have used the same wording as much as possible, to emphasize
this.

35.7 Theorem. The following problem is undecidable.

Context-Free Grammar Ambiguity

INPUT: A Context-Free Grammar G

QUESTION: Is G ambiguous?

Proof. For sake of contradiction, suppose there were a decision procedure Dambig
for this problem. Then the following would be a decision procedure for the Post
Correspondence Problem.

- Given instance P of the PCP;

- Build GA from P;

- Call Dambig on GA;

- If Dambig returns YES, return YES, else return NO

The fact that this would be a correct decision procedure for the PCP is a
consequence of Lemma 35.6. Since there can be no decision procedure for the PCP,
this contradiction shows that there can be no decision procedure for the Context-
Free Grammar Ambiguity problem. ///

35.4 Context-Free Universality

When we considered the Universality problem for DFAs (does the given DFA
accept all strings?) the decision procedure was an easy tweak of the decision
procedure for DFA Emptiness. That was because swapping accepting and non-
accepting DFA states was an easy way to complement a accepted language.

When we pass to CFGs, we have a decision for the Emptiness problem. But we do
not have an easy way to “complement a grammar,” indeed we know that if K is a
context-free language then the complement of K may or may not be context-free.

And in fact the asymmetry is even more striking when it come to decision
problems: it is undecidable whether a CFG generates all strings.

354

35 UNDECIDABILITY RESULTS ABOUT CONTEXT-FREE GRAMMARS

Let P be a PCP instance. We create yet one more another grammar GU from P.
Here is where we use the fact about GT and GB (Lemma 35.3) that we can construct
grammars G′T and G′B with L(G′T) = L(GT) and L(G′B) = L(GB). Then we let GU

be the grammar built in the standard way to capture the union of those, that is,
L(GU) = L(G′T)∪L(G′B) = L(GT)∪L(G′B).

35.8 Lemma. Let P be a PCP instance. The P has a solution if and only if the
grammar GU does not generate all strings over its terminal alphabet.

Proof. We showed in Lemma 35.4 that P has a solution if and only if
L(GT)∩L(GB) 6= /0. Taking complements of each side and doing some basic set
theory we have:

P has a solution if and only if L(GT)∩L(GB) 6= Σ
∗

if and only if L(GT)∪L(GB) 6= Σ
∗

if and only if L(G′T)∪L(G′B) 6= Σ
∗

which is what we wanted to show.

///

Again the proof of the next theorem follows the same pattern as the proof of
Theorem 35.5.

35.9 Theorem. The following problem is undecidable.

Context-Free Grammar Universality

INPUT: A Context-Free Grammar G with terminal alphabet Σ

QUESTION: Is L(G) = Σ∗?

Proof. For sake of contradiction, suppose there were a decision procedure Duniv

for this problem. Then the following would be a decision procedure for the Post
Correspondence Problem.

- Given instance P of the PCP;

- Build GU from P;

- Call Duniv on GU ;

- If Duniv returns YES, return NO, else return YES

355

35 UNDECIDABILITY RESULTS ABOUT CONTEXT-FREE GRAMMARS

The fact that this would be a correct decision procedure for the PCP is a
consequence of Lemma 35.8 Since there can be no decision procedure for the PCP,
this contradiction shows that there can be no decision procedure for the Context-
Free Grammar Universality problem. ///

35.5 Exercises

Exercise 236. Consider the following two decision problems.

INPUT: A context-free grammar G and a DFA M

QUESTION: Is L(M)⊆ L(G)?

INPUT: A context-free grammar G and a DFA M

QUESTION: Is L(G)⊆ L(M)?

Exactly one of these problems is undecidable. Which one is it? Prove it.

Exercise 237. Show that the following problems is undecidable.

CFG Infinite Intersection

INPUT: Two CFGs G1 and G2

QUESTION: Is L(G1)∩L(G2) infinite?

Hint. This isn’t hard. Use Exercise 230.

356

36 UNDECIDABILITY RESULTS ABOUT ARITHMETIC

36 Undecidability Results about Arithmetic

In this section we describe some decidability and undecidability results about
familiar mathematical structures. This is a huge subject so we will just focus on
a couple of results, designed to convey some essential facts, impart some basic
intuition, and hopefully spur you to explore more on your own.

Formalities We want to work with numbers and polynomials as strings.
Elsewhere in these notes we have presented a one-to-one correspondence between
the natural numbers and the finite strings over {0,1}. We will also assume—
without presenting boring details—that each polynomial can be represented as a
finite string of symbols.

In this way various sets of natural numbers are identified with sets of strings and
various sets of polynomials are also sets of strings. In particular sets of natural
numbers are languages, as are sets of polynomials. And so it really does make
sense to speak of sets of numbers or sets of polynomials as being decidable,
semidecidable, etc, . . . or not.

We will be interested in the following structures

• N, the natural numbers: {0,1,2, . . .}.

• Z, the integers: {. . . ,−2,−1,0,1,2, . . .}.

• Q, the rational numbers: {p/q | p,q ∈ Z}.

• R, the real numbers.

There is one important subtlety: arbitrary real numbers—in contrast to integers or
rationals—cannot be viewed as finite objects, and so cannot be encoded as strings.
One has to be careful when speaking of algorithmic questions concerning the real
numbers!

36.1 Polynomial Solvability

Consider the problem of deciding whether a polynomial—perhaps with more than
one variable—has roots (that is, values that make the polynomial evaluate to 0).
The answer to this question can certainly depend on whether we are thinking about
integers, real numbers, etc. For example if we ask whether x2− 2 has any roots,
the answer is “no” if we ask about Z or Q, but the answer is “yes” if we ask about
R.

357

36 UNDECIDABILITY RESULTS ABOUT ARITHMETIC

Polynomial solvability is a fundamental question about ordinary mathematics over
various structures, and so understanding its decidability (or undecidability) is
fundamental to understanding the limits of computation.

36.2 Polynomials over the Integers and Natural Numbers

Here is the decision problem we care about.

PolyInt: Polynomial solvability over Z
INPUT: a multi-variable polynomial p(~x) whose coefficients are in Z
QUESTION: are there values~a drawn from Z such that p(~a)= 0 holds?

The phrasing “does the equation p(~x) = 0 have roots in Z?” is a little shorthand for
the question above.

We are going to explore whether this problem is decidable, that is, we will ask
whether there is a decision procedure which will take as input an arbitrary p(~x)
over Z and answer yes or no whether p(~x) has any roots in Z.

Here is a variation which will be convenient:

PolyNat: Polynomial solvability over N
INPUT: a multi-variable polynomial p(~x) whose coefficients are in Z
QUESTION: are there values~a drawn from N such that p(~a)= 0 holds?

Note that in this problem we allow the coefficients to range over the integers but
we ask for solutions drawn from the natural numbers. This problem turns out to
be more convenient technically than the POLYINT problem, but it is not really any
easier (or harder!), as we now show.

36.2.1 PolyInt is no harder than PolyNat

Suppose we are given a polynomial p and we wish to know whether it has solutions
over Z. Build a new polynomial p′ by replacing each integer variable x in p by the
difference (x1− x2) of two new natural-number variables.

Then p has a solution over Z if and only if p′ has a solution over N.

358

36 UNDECIDABILITY RESULTS ABOUT ARITHMETIC

36.2.2 PolyInt is no harder than PolyNat

Suppose we are given a polynomial q and we wish to know whether it has solutions
over N. Build a new polynomial q’ by replacing each natural-number variable x in
q by an expression (x2

1 + x2
2 + x2

3 + x2
4) using new integer variables. This works by

virtue of the theorem of Lagrange that says that any natural number can be written
as the sum of 4 squares.

Then q has a solution over N if and only if q′ has a solution over Z

So, even though PolyInt arises more naturally mathematically, for the purpose of
studying decidability we might as well study PolyNat. This turns out to be more
convenient, since it is easier to connect N with our known computability results.

36.1 Check Your Reading. Explain why it would not be very interesting to
consider the polynomial solvability problem where both coefficients and solutions
were restricted to N. (By the way, using subtraction is tantamount to allowing
coefficients over Z!)

Semidecidability

Before proving the next result we note that for each k, is not hard to effectively
enumerate the set of all k-tuples of natural numbers. One method is the following.
For any fixed value n, consider the set of all k-tuples over N whose largest element
is n. Clearly there are only finitely many such k-tuples, and we can enumerate these
effectively. So to enumerate all k-tuples: first enumerate the k-tuples whose largest
element is 0 (there is just one!); then enumerate the k-tuples whose largest element
is 1; . . . , and so on.

Now we can show

36.2 Lemma. Polynomial solvability over Z is semidecidable.

Proof. It will be sufficient, and more convenient, to show that polynomial
solvability over N is semidecidable. Here is a semi-decision procedure:

on input p(~x);
let k be the number of variables in p;
let~n0,~n1, . . . be an enumeration of all k-tuples over N;
evaluate each p(~ni) in turn;
if and when any of these evaluates to 0, return 1.

359

36 UNDECIDABILITY RESULTS ABOUT ARITHMETIC

///

This is a good time to acknowledge the following issue. We have phrased
polynomial solvability as a decision problem, but of course what one really wants
to do, given a polynomial, is find roots, not just get a yes/no answer as to whether
roots exist.

But if you know a polynomial has roots, then, as the above proof makes clear,
you can always find roots, just by searching. Of course in practice one would like a
more efficient method, and of course such methods are well-studied. The important
point here is that if are able to prove that a given decision problem is undecidable
then of course there will be no hope of actually computing solutions.

36.2.3 Diophantine Sets

Our main technique will be to construct a connection between polynomials and
semidecidable sets. The crucial definition is the next one.

36.3 Definition. A set A ⊆ N is a Diophantine set18 if there is a polynomial
p(z,x1, . . . ,xk) with coefficients in Z such that

for every n, n ∈ A if and only if the polynomial p(n,x1, . . . ,xk) has a root.

By the way, it makes perfect sense to speak of Diophantine sets of ordered pairs,
ordered triples, etc. We just use several variables x1,z2, . . . instead of just z. In
this way we defined Diophantine relations, not just sets. For example, the relation
“less than or equal” is Diophantine in this sense, using the polynomial z1− z2 + x.
We won’t use these in this brief treatment of the subject, so we will always use
“Diophantine” in the one-variable sense of Definition 36.3.

36.4 Examples.

1. The set of odd numbers is Diophantine; the polynomial is z− (2x1 +1)

2. The set of divisors of 100 is Diophantine; the polynomial is zx1−100

3. The set of squares is Diophantine; the polynomial is z− x2
1

4. The set of non-primes is Diophantine; the polynomial is z− (x1 +2)(x2 +2)

18Diophantus was a 3rd century Greek mathematician who studied polynomial equations

360

36 UNDECIDABILITY RESULTS ABOUT ARITHMETIC

More examples are Exercise 243

To make the connection between polynomial solvability and (un)decidability,
remember that we have a one-to-one correspondence between the natural numbers
and the finite strings over {0,1}. If S = {n1,n2, . . .} is a set of natural numbers, we
will write {bn1 ,bn2 , . . .} to refer to the corresponding set of bitstrings.

36.5 Check Your Reading. Explain why, if a set S = {n1,n2, . . .} of natural num-
bers is Diophantine then the corresponding language {bn1 ,bn2 , . . .} is semidecid-
able.

The following amazing theorem is the key result for us. The converse of the
observation that every Diophantine set is semidecidable was conjectured in 1953
by Martin Davis, and was worked on for years by many mathematicians, chiefly
Davis, Hilary Putnam, Julia Robinson, and Yuri Matiyasevich; the final step in the
proof was achieved by Matiyasevich in 1970. To reflect their collective efforts this
theorem is often named using their initials:

36.6 Theorem (The DPRM Theorem). A set S = {n1,n2, . . .} of natural numbers
is Diophantine if and only if the corresponding language {bn1 ,bn2 , . . .} is
semidecidable.

Once we know Theorem 36.6 we can draw our undecidability conclusion.

36.7 Theorem. Polynomial solvability over Z is undecidable, and polynomial
solvability over N is undecidable.

Proof. We will prove the result that polynomial solvability over N is undecidable.
By the work we did in Section 36.1, specifically sub-Section 36.2.1, this will imply
that polynomial solvability over Z is undecidable as well.

Choose a language that is semidecidable but not decidable; for concreteness here
let us consider SelfHalt. The DPRM Theorem says that there is a polynomial
p(z,x1, . . . ,xk) such that for every bn:

bn ∈ SelfHalt if and only if the polynomial p(n,x1, . . . ,xk) has a root.

So if there were a decision procedure d for polynomial solvability, the following
would be a decision procedure for membership in SelfHalt:

on input bn;
ask d whether the polynomial p(n,x1, . . . ,xk) has a root;
return this answer

///

361

36 UNDECIDABILITY RESULTS ABOUT ARITHMETIC

Where does the decidability arise? A reasonable question is: if we bound the
number of variables in our polynomials, or perhaps the degree of the polynomial,
can we get decidability? Some results are known. Let’s use n to count the number
of variables in a polynomial, and d to stand for the total degree of a polynomial.

• It is important that we are considering multi-variable polynomials: Exer-
cise 242 asks you to prove that one-variable Diophantine solvability is de-
cidable.

• Polynomial solvability is undecidable for n≥ 11.

• Polynomial solvability is decidable for d = 2.

• Any polynomial is equivalent to one of degree at most 4. Therefore
polynomial solvability is undecidable for d ≥ 4.

• There exist fixed n and d such that the problem of deciding solvability for
polynomials with n variables and total degree d is undecidable. We do not
currently have tight bounds for n or d.

36.2.4 Polynomials over the Real Numbers

Let’s turn to the question of whether a given polynomial has real-valued roots.
Polynomial solvability over the reals is crucially important in many applications,
most recently in robotics. For a nice treatment of some ways that solving
polynomials is useful in robotics, see the great textbook Ideals, Varieties,
and Algorithms: An Introduction to Computational Algebraic Geometry and
Commutative Algebra, by Cox, Little, and O’Shea [CLO92].

Now, since we are asking for algorithmic solutions to this question, there is an
important subtlety in the definition of our problem. Specifically, we do not work
with polynomials with real-valued coefficients, because such polynomials cannot,
in general, be represented in a computer. This is because real numbers do not
have finite representations (some do, but only countably many). Thus arbitrary
polynomials with real coefficients can’t even be given as input to a program!

So what we work with are polynomials with rational number coefficients, while
we search for solutions in R. This seems odd at first, but the coefficients-in-Q
constraint is natural in practice and the answers-in-R allowance is the right one if
we are reasoning about, for example, Euclidean space.

362

36 UNDECIDABILITY RESULTS ABOUT ARITHMETIC

Polynomial solvability over R
INPUT: a multi-variable polynomial p(~x) whose coefficients are in Q
QUESTION: are there values~a drawn from R such that p(~a)= 0 holds?

36.8 Theorem. Polynomial solvability over R is decidable

In fact this is an immediate corollary of a much stronger (and more important)
theorem, which we give below as Theorem 36.10.

36.2.5 Polynomials over the Rational Numbers

No one knows whether there is a decision procedure to solve polynomials over the
rationals!

Open Problem. Is polynomial solvability over Q decidable?

36.3 Logical Truth

Here is a significant generalization of polynomial solvability: the question of the
truth or falsity of complex statements using arithmetic operators, such as “every
even number is the the sum of two prime numbers.”

Formally we speak of arithmetic sentences 19. These are first-order logic sentences,
using addition, multiplication, and ordering, and logic connectives and quantifiers
such as ∧,∨,∀, and ,∃. For example

∀x ∃y . (x < y)∧ (y < x+1)

is false in N and Z, and is true in Q and R.

On the other hand
∀x ((0 < x) → ∃y (y∗ y = x))

is true in R and false in the other three structures.
19accent on the third syllable of “arithmetic,” since it is used as an adjective.

363

36 UNDECIDABILITY RESULTS ABOUT ARITHMETIC

The main observation for now is that the problem(s) of polynomial solvability are
special cases of the problem(s) of logical truth. A concrete example will make this
clear. To ask

does 2x2 +17y−1 have a root in (for example) Z?

is the same as asking whether the arithmetic sentence

∃x ∃y . 2∗ (x∗ x)+17y−1

is a true sentence about (for example) Z.

36.3.1 Logical Truth over the Natural Numbers and Integers

Logical Truth over Z
INPUT: An arithmetic sentence S

QUESTION: Is S true about Z?

The following is an immediate corollary of Theorem 36.7

36.9 Theorem. Logical truth over Z is undecidable; logical truth over N is
undecidable.

Proof. In each case the result follows from the fact that polynomial solvability is a
special case of logical truth. ///

In fact, the set of arithmetic sentences that are true in N is not only not decidable, it
is not even semidecidable, nor co-semidecidable. To say in a precise way just how
rich it is would require a long digression into hierarchies of logical complexity,
which we will resist doing here.

36.3.2 Logical Truth over the Real Numbers

Things are quite different over the real numbers.

The real numbers are, individually, much more complicated beasts than integers
are; for example a typical real number doesn’t even have a finite representation.

364

36 UNDECIDABILITY RESULTS ABOUT ARITHMETIC

So, an important first thing to note is that it is not immediately obvious that
polynomial solvability over R is even semidecidable. In contrast to Z and N, there
can be no “generate and test” semidecision procedure to check for R-solvability
of a polynomial. We cannot enumerate all possible solutions, again because
real numbers are infinte objects. Or, what amounts to the same thing, there are
uncountably many real numbers, so we can’t list them in a way algorithms can
work with them.

But, amazingly, the space R of real numbers has much nicer logical behavior
than that of Z. The following famous theorem goes even beyond the result the
polynomial solvability is decidable.

36.10 Theorem. Logical truth over R is decidable.

This was first proved by Alfred Tarski [Tar48]. As we hinted earlier, algorithms for
deciding the truth of sentences about the reals are used in several applications, and
so improving the efficiency of such algorithms is still an area of research.

We immediately get:

36.11 Corollary. Polynomial solvability over R is decidable.

36.3.3 Logical Truth over the Rational Numbers

When it comes to logical truth, the rationals behave more like the intergers than
like the reals.

Logical Truth over Q
INPUT: An arithmetic sentence S

QUESTION: Is S true about Q?

36.12 Theorem. Logical truth over Q is undecidable.

As we mentioned above, the decidability of the (perhaps simpler?) problem of
polynomial solvability over the rationals is unknown.

36.4 Summary

• Over N:

365

36 UNDECIDABILITY RESULTS ABOUT ARITHMETIC

– Polynomial solvability is undecidable.
– Therefore, logical truth is undecidable.

• Over R:

– Polynomial solvability is decidable.
– Indeed, logical truth is decidable.

• Over Q:

– It is an open problem whether polynomial solvability is decidable.
– Logical truth is undecidable.

A final remark We’ve talked about the integers, the rational numbers, and the
reals. We haven’t talked about the complex numbers C. What about polynomial
solvability there? Well, if you know about C at all you know that every polynomial
has roots over C, indeed that’s the crucial fact about C in the first place. So the
decision problem for polynomial solvability over C istrivial: the answer to every
instance of the problems is “yes.”

But what about the richer question of logical truth? The situation is the same as
for logical truth over R: it is decidable. Tha is to say, there is an algorithm that
determines the truth or falsity of any arithmetic sentence when interpreted over C.

36.5 Exercises

Exercise 238. If we cared to, we could effectively enumerate all the k-tuples over
Z. Give a method to do this.

Exercise 239. Find a polynomial with integer coefficients that roots over Q but no
roots over Z.

Find a polynomial with integer coefficients that roots over Q but no roots over Z.

Exercise 240.

1. Suppose we want to ask whether the polynomial

p = 3x17y3−47x12z+111xy7 +99

has solutions over Z.

We described in the text a way to build a polynomial p such that p has roots
in Z if and only if q has roots in N. What is that q?

366

36 UNDECIDABILITY RESULTS ABOUT ARITHMETIC

2. Suppose we want to ask whether the polynomial

p = 3x17y3−47x12z+111xy7 +99

has solutions over N.

We described in the text a way to build a polynomial q such that p has roots
in N if and only if q has roots in Z What is that q?

Exercise 241. This problem is about one-variable polynomials.

Prove: if p is cnxn + cn−1xn−1 + . . .c1x+ c0 and a is an integer root of p, then a
divides c0.

Hint. Do some basic algebra to arrive at an equation that looks like ab+c0 = 0 for
some integer quantity b; argue that this means that a divides c0.

Note. This is a simplified version of a stronger theorem, which states that if a/b is
a rational number in lowest terms with p(a/b) = 0 then a divides c0 and b divides
cn.

Exercise 242. Show that the problem of solvability of one-variable polynomials
over Z is decidable.

Hint. Use Exercise 241

Exercise 243. Each of the following polynomials p(z,x1, . . .xn) defines an easy-
to-describe (Diophantine) set A⊆ N, by

A = {n ∈ N | ∃x, . . . ,xk : p(n,x1, . . .xk) = 0}

Describe each set. You needn’t prove your answer, just generate enough instances
so that you are confident that you know the set.

1. (z−17)(x1 +1)

2. z+ x1 = 10

3. z−7x1

4. (z−2x1)(z−3x2)

5. z− (2x+3)(y+1)

6. x2
1− z(x2 +1)2−1

Hint. This one isn’t easy. Note for starters that z can’t be a perfect
square...(why?)

367

36 UNDECIDABILITY RESULTS ABOUT ARITHMETIC

Hint. For several of these you can do this by isolating z and just plugging in values
for the xi. Even when you can’t isolate z you can just start plugging in values for
the xi to get intuitions.

Exercise 244.

1. Suppose p(z,x1, . . .xk) and q(z,y1, . . .yp) are polynomials.

Explain why, for any n and tuples (a1, . . . ,ak) and (b1, . . . ,bp),

p(n,a1, . . .ak) = 0 and also q(n,b1, . . .bp) = 0

if and only if

(p(n,a1, . . .ak))
2 +(q(n,b1, . . .bp))

2 = 0

2. Using this, prove (without quoting Theorem 36.6) that the intersection of
two Diophantine sets is Diophantine.

Exercise 245. Prove (without quoting Theorem 36.6) that the union of two
Diophantine sets is Diophantine.

Hint. Proceed in the spirit of Exercise 244, that is, find an appropriate way to
combine polynomials.

Exercise 246. Prove or disprove: The complement of a Diophantine set is
Diophantine.

368

REFERENCES

References

[Ard61] Dean N Arden. Delayed-logic and finite-state machines. In
Proceedings of the Second Annual Symposium on Switching Cir-
cuit Theory and Logical Design, pages 133–151. IEEE, 1961.
http://dx.doi.org/10.1109/FOCS.1961.13.

[CLO92] David Cox, John Little, and Donal O’Shea. Ideals, varieties, and
algorithms, volume 3. Springer, 1992.

[EKR82] Andrzej Ehrenfeucht, Juhani Karhumäki, and Grzegorz Rozenberg.
The (generalized) Post Correspondence Problem with lists consisting
of two words is decidable. Theoretical Computer Science, 21(2):119–
144, 1982.

[Eri] Jeff Erickson. Models of computation. http://www.cs.illinois.
edu/˜jeffe/teaching/algorithms.

[HMU06] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction
to Automata Theory, Languages, and Computation (3rd Edition).
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
2006.

[Koz97] Dexter C. Kozen. Automata and Computability. Springer-Verlag New
York, Inc., Secaucus, NJ, USA, 1st edition, 1997.

[RR67] Hartley Rogers and H Rogers. Theory of recursive functions and
effective computability, volume 5. McGraw-Hill New York, 1967.

[Sip96] Michael Sipser. Introduction to the Theory of Computation. Interna-
tional Thomson Publishing, 1st edition, 1996.

[Sud97] Thomas A. Sudkamp. Languages and Machines: An Introduction to
the Theory of Computer Science. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1997.

[Tar48] Alfred Tarski. A Decision Method for Elementary Algebra and
Geometry. University of California Press, 1948.

369

http://www.cs.illinois.edu/~jeffe/teaching/algorithms
http://www.cs.illinois.edu/~jeffe/teaching/algorithms

	I Mathematics Background
	Relations and Functions
	Notation for Common Sets
	Functions
	Properties of Composition
	Injective and Surjective
	Relating Injections, Surjections, and Inverses
	Characteristic Functions and Subsets
	Relations
	Composition and Inverse on Relations
	Properties of Relations
	Exercises

	Strings, Languages, and Regular Expressions
	Why Do We Care About Languages?
	Ordering Strings
	Operations on Languages
	Regular Expressions and Pattern Matching
	Languages vs Expressions
	Algebraic Facts About Languages
	A Typical Proof About Languages
	Exercises

	Cardinality
	Key Definitions
	Basic Tools
	Some Examples
	Uncountable sets
	Tools for Showing Countability
	Cardinality and Formal Languages
	The Continuum Hypothesis
	Summary
	Exercises

	Trees
	König's Lemma
	Application: multiset induction
	Exercises

	Induction: Defining, Computing, and Proving
	Defining
	Proving

	II Regular Languages
	Deterministic Finite Automata
	Regular Languages
	Not All Languages are Regular
	A Peek Ahead: Regular Expressions and DFAs
	Exercises

	DFA Complement and Product
	The Complement Construction
	The Product Construction
	Regular Closure: Intersection and Union
	Exercises

	Nondeterministic Finite Automata
	Runs of an NFA
	Examples
	From NFAs to DFAs: the Subset Construction
	The Product Construction on NFAs
	The Complement Construction on NFAs?
	Exercises

	NFAs with -Transitions
	From NFA to NFA
	NFA for Closure Properties
	Pictures
	Algorithms and Correctness
	Exercises

	From Regular Expressions to Automata
	Exercises

	From Automata to Regular Expressions
	Using Equations to Capture NFAs
	Arden's Lemma
	Using Arden's Lemma: First Steps
	The General Technique: Arden's Lemma and Substitution
	Perspective
	Exercises

	Proving Languages Not Regular
	The K-Distinguishability Relation
	Examples
	Regular Languages Have Finitely Many Classes
	Using Distinguishability to Prove Languages Not Regular
	Exercises

	DFA Minimization
	Unreachable States
	State Equivalence
	Computing the relation
	The Collapsing Quotient of a DFA
	 M Does the Right Thing
	 M is special
	Application: Testing Equivalence of DFAs
	Collapsing NFAs?
	Exercises

	The Myhill-Nerode Theorem
	Finite index languages are regular
	Relating Myhill-Nerode and Minimization
	Exercises

	Decision Problems about Regular Languages
	DFA Membership
	DFA Emptiness
	DFA Universality
	DFA Subset
	DFA Equality
	DFA Infinite Language
	NFA and Regular Expression inputs
	Complexity of Regular Conversion Algorithms
	NFA Membership
	Regular Expression Membership
	Exercises

	III Context-Free Languages
	Context-Free Grammars
	Parse Trees
	Regular Grammars
	More Examples and non-Examples
	Closure Properties, or How to Build Grammars
	There Are Countably Many CFLs
	Exercises

	Proving correctness of grammars
	General Strategy
	Examples
	Exercises

	Ambiguity
	Removing Ambiguity From Grammars
	Inherent Ambiguity
	Exercises

	Refactoring Context-Free Grammars
	Eliminating Useless Rules
	Eliminating Chain Rules
	Eliminating Erasing Rules
	An Upper Bound on Derivation Lengths
	Chomsky Normal Form
	NFAs Revisited
	Exercises

	Pushdown Automata and Parsing
	Warm Up: DFAs Are Parsers for Regular Grammars
	Pushdown Automata
	Non-Determinism
	PDAs and CFGs
	PDAs and Parsing Algorithms
	Exercises

	Context-Free Membership and the CKY Algorithm
	A Bounded Exhaustive Search
	The Cocke-Younger-Kasami algorithm
	Exercises

	Proving Languages Not Context-Free
	A Language Which is Not Context-Free
	A Pumping Lemma for Context-Free Grammars
	Exercises

	Decision Problems About CFGs
	CFG Membership
	CFG Emptiness
	CFG Infinite Language
	CFG Universality
	CFG Ambiguity
	Exercises

	IV Computability
	Computability: Introduction
	The Halting Problem
	The Halting Problem Revisited
	Exercises

	Decision Problems, Languages, and Encoding
	Things Are Strings
	Decision Problems Are Languages
	Bit Strings Are Universal
	Enumerating the Bit Strings
	Summary
	Exercises

	Functions, Programs, and Decidability
	Turing Machines and Programs
	Partial Functions
	Programs Compute Partial Functions
	Programs Are Not The Same As Functions!
	Programs Accept Languages
	Decidable Languages
	Two Examples
	Undecidable Problems: a Cardinality Argument
	Extensionality
	Section Summary
	Exercises

	Some Decidable Languages
	Decision Problems about Finite Automata
	Decision Problems About CFGs
	Closure Properties of the Decidable Languages
	Exercises

	Some Undecidable Languages
	Standalone Arguments
	Undecidability via Reduction
	Reduction by Specialization
	Exercises

	Rice's Theorem
	Functional Properties of Programs
	Functional Sets
	What do we mean by ``non-trivial''?
	The Theorem
	Exercises

	Semidecidable Languages
	Decidable versus Semidecidable
	Closure Properties of the Semidecidable Languages
	Exercises

	Enumerability
	Enumerability is Equivalent to Semidecidability
	Exercises

	Always-Terminating Programs Can't be Enumerated
	Reducibility
	Reducibility and Semidecidability
	Two Potential Gotchas
	Transitivity of m
	The Acceptance Problem Revisited
	Why the Acceptance Problem is Special
	Emptiness Is Not Semidecidable
	Reducibility for Complexity
	Exercises

	Post's Correspondence Problem
	Examples
	Undecidability of PCP
	Exercises

	Undecidability Results about Context-Free Grammars
	PCP meets CFG
	Context-Free Language Intersection
	Context-Free Grammar Ambiguity
	Context-Free Universality
	Exercises

	Undecidability Results about Arithmetic
	Polynomial Solvability
	Polynomials over the Integers and Natural Numbers
	Logical Truth
	Summary
	Exercises

