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1 Summary of Days 1 and 2

1.1 e

There are numerous ways to represent the number e; in addition to its
decimal expansion, it can be written as a limit, an infinite sum, or one of
several continued fractions.

• 2.718281828459045 · · ·

• lim
n→∞

(
1 +

1
n

)n

• 1
0!

+
1
1!

+
1
2!

+
1
3!

+ · · ·

• The continued fractions [2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, · · · ]
or [1, 0, 1, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, · · · ]

It’s a pretty special number, and the function ex and its inverse lnx have
some interesting properties:

• d
dxex = ex

• eiθ = cos θ + i sin θ, which reduces to eiπ + 1 = 0 when θ = π.

• d
dx lnx = 1

x

• ln (1 + x) = x− x2

2
+

x3

3
− · · · when 0 < (1 + x) ≤ 2.

This last property is what made the “natural logarithm” easy to calculate
compared to logarithms in other bases. This was helpful for John Napier in
developing logarithms as a multiplication shortcut.
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Napier’s also took advantage of the identity log (xy) = log x + log y.
Using this rule, one can quickly approximate any logarithm from a table of
precomputed values between 1 and 10.

The same identity can also be written as ax+y = axay. The similarity of
this to the identity cos (x + y) = cos x cos y−sinx sin y suggests a connection
between exponential functions and trigonometric functions. We use complex
numbers to investigate this connection.

1.2 Complex Numbers

The motivation for having complex numbers at all comes from trying to
solve polynomials. For instance, many quadratics such as x2 = −1 are
unsolvable unless complex solutions are permitted. A stronger motivation
comes from cubics; Cardano’s method for solving cubic polynomials gives
answers of the form 3

√
a +

√
b + 3

√
a−

√
b. Cubics with three real solutions

produced negative values of b, highlighting the need to invent a number i
whose square is equal to −1.

Since i can’t really be said to lie between real numbers, we can visualize
it and all its multiples on an axis perpendicular to the real line. Taking
all possible sums of real and imaginary numbers gives the complex plane, a
space in which multiplying by i is the same as a 90-degree rotation. We’ll
write “C” for the set of all complex numbers.

1.3 Some Trigonometry

The function cis θ = cos θ + i sin θ is special:

• It behaves somewhat like an exponential function, since it follows the
identity cis (x + y) = cis x cis y

• It is one of only three linear combinations of sine and cosine that have
the above property. (The other two are cos θ − i sin θ and boring old
zero.)

• (cis x)n = cis (nx) (de Moivre’s formula)

1.4 Graphs of Complex Functions

We’d like to graph functions from complex numbers to complex numbers,
but we don’t have enough dimensions for all 4 axes. Instead we assign a
color to every point in the complex plane: a color from the rainbow denotes
the angle that separates a complex number from the positive real axis, and
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brightness denotes its distance from the origin. To graph a function f(z),
we paint every point z in C the color of f(z).

2 Euler’s Derivation of the Natural Logarithm’s
Taylor Series

This derivation of the Taylor series for ln (1 + x) is attributed to Euler. It
isn’t quite what we could call rigorous proof, but it’s an interesting way of
looking at the natural logarithm.

Split ln (1 + x) into the product ωn where ω is really small and n is
positive and really big. Then:

ω =
1
n

ln (1 + x)

= ln (1 + x)
1
n

= ln
[
1 +

(
(1 + x)

1
n − 1

)]
From d

dxex = ex we obtain the linear approximation ex ≈ 1 + x for x
near zero, which can be rewritten as ln (1 + x) ≈ x. Then:

ω = ln
[
1 +

(
(1 + x)

1
n − 1

)]
≈ (1 + x)

1
n − 1

Newton’s generalization of the binomial theorem can be used to simplify
this:

(1 + x)
1
n − 1 =

[
1 +

1
n

x +

(
1
n

) (
1
n − 1

)
2!

x2 + · · ·

]
− 1

=
1
n

x +

(
1
n

) (
1
n − 1

)
2!

x2 +

(
1
n

) (
1
n − 1

) (
1
n − 2

)
3!

x3 + · · ·

Recalling that this expression is supposed to approximate ω and that we
let ln (1 + x) = ωn, multiply the expression by n to obtain an expression for
ln(1 + x):

ln (1 + x) ≈ x +

(
1
n − 1

)
2!

x2 +

(
1
n − 1

) (
1
n − 2

)
3!

x3 + · · ·
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Since n is large, 1/n is almost zero, which allows us to simplify this into
a familiar sum.

ln (1 + x) ≈ x +
(−1)
2!

x2 +
(−1)(−2)

3!
x3 +

(−1)(−2)(−3)
4!

x4 + · · ·

≈ x− 1
2
x2 +

1
3
x3 − 1

4
x4 + · · ·

The generalized binomial theorem was important here, and there’s ac-
tually a lot hiding behind it. It was known by Euler’s time, but people had
difficulty establishing a solid proof of it. To illustrate, one might try to de-
rive it by finding the Taylor expansion of (1+x)y for a real number y. That,
unfortunately, requires a rule for finding d

dxxy for arbitrary reals y, and the
usual derivation of such a rule uses the generalized binomial theorem!
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