
Computational Complexity Theory Summer HSSP 2018

Week 1: Computability and Decision Problems
Dylan Hendrickson MIT Educational Studies Program

1.1 The Halting Problem

We’ll start by considering whether programs can solve certain problems at all. Most problems you encounter
can be solved by a program, though it may take a huge amount of time, perhaps brute forcing its way
through every potential solution. But there are some problems that it’s not clear how to write a program
to solve. For example, the halting problem: given a program and some input, does the program eventually
halt on that input? Some programs will keep running in an infinite loop, and it’s not always obvious when
this will happen. (Often, it will be easy to tell that a program will halt, or that it will loop, but we want
an algorithm that always tells us whether a program halts.) One attempt would be to run the program in
question; if it halts, then you can answer ‘yes.’ But if it doesn’t halt, then you’ll never find out; maybe it
will keep running forever or maybe it will suddenly stop if you simulate it for a little longer.

Theorem 1.1. There is no program that solves the halting problem.

Proof. Suppose there were a program H which solved the halting problem; that is, for any program P
and input x, H(P, x) answers either ‘yes’ or ‘no’ depending on whether P (x) halts. We’ll show that this
assumption leads to a contradiction, so it must be false. Use H to construct a new program G which does
the following when input a program P :

• Run H(P, P ); this tells us whether P halts when given its own code as input.

• If H(P, P ) is ‘yes,’ enter an infinite loop.

• If H(P, P ) is ‘no,’ halt.

Now G(P ) halts exactly when H(P, P ) is ‘no,’ which is when P (P ) loops. Let’s consider what happens when
we run G on its own code, by plugging in G for P . We find that G(G) halts exactly when G(G) loops, which
is impossible. So our assumption that H exists must be wrong.

1.2 Decision Problems

When we talk about what programs are capable of, we usually mean the classes of yes/no questions they can
answer. Such a class of yes/no questions is called a decision problem. We’ve already seen our first decision
problem: given a program P and input x, does P (x) halt? Notice that it’s uninteresting to consider only a
single yes/no question, since it has an answer of either ‘yes’ or ‘no,’ and either the program the outputs ‘yes’
or the program that outputs ‘no’ solves it (even if we don’t know which one). We instead consider infinite
families of yes/no questions, and look for programs that can answer all of them. When a program answers
‘yes,’ we say it accepts the input, and when it answers ‘no,’ we say it rejects the input.

If there is a program that answers every yes/no question in a decision problem, we say that the program
decides the decision problem, and that the decision problem is decidable. Most decision problems you care
about are decidable, but we’ve just seen that the halting problem isn’t decidable.

1-1



Week 1: Computability and Decision Problems 1-2

If there is a program that accepts whenever the answer is ‘yes,’ and either rejects or runs forever whenever
the answer is ‘no,’ we say that the program recognizes the decision problem, and that the decision problem
is recognizable. The algorithm which, given inputs P and x, runs P (x) until it halts and then accepts,
recognizes the halting problem. If P (x) halts, this algorithm will eventually accept, and if P (x) doesn’t halt,
this algorithm runs forever. So the halting problem is recognizable but not decidable.

Deciders have to always given an answer, but recognizers only have to answer when the answer is ‘yes,’ and
are allowed to loop when the answer is ‘no.’ What if we allow the program to loop when the answer is ‘yes’
but not when it’s ‘no’? Then we say that the program corecognizes the decision problem, and the decision
problem is corecognizable. For example, take the negation of the halting problem: given a program P and
input x, does P (x) run forever? The program which runs P (x) and rejects when it halts corecognizes this
decision problem; if the answer is ‘no,’ then P (x) halts and the program rejects, and if the answer is ‘yes’
then it runs forever.

We are now in a position to prove some results about decidability, recognizability, and corecognizability,
but I’d like to introduce some notation first. If L is a decision problem, we write x ∈ L to mean x is in
L, or the answer to the question corresponding to x is ‘yes.’ We write x /∈ L if the answer to the question
corresponding to x is ‘no.’ The complement L of L is the decision problem with all answers opposite those

of L, so x ∈ L exactly when x /∈ L and vice-versa. Note that L = L. I’ll also use the shorthand ‘iff’ for ‘if
and only if.’

(I might sometimes say ‘language’ instead of ‘decision problem’; the terms are essentially equivalent, but I
think it’s easier to think in terms of decision problems. A language is a set of inputs, which you think of as
the inputs for which the answer is ‘yes.’)

Lemma 1.2. A decision problem L is recognizable iff L is corecognizable.

Exercise 1. Prove Lemma 1.2. Once you understand the notation, you should be able to see that it’s not
saying anything particularly deep or surprising.

Lemma 1.3. A decision problem L is decidable iff it is both recognizable and corecognizable.

Proof. There are two directions to prove; one is easy. First suppose L is decidable. The program that decides
L both recognizes and corecognizes L, so L is recognizable and corecognizable.

Now suppose L is recognizable and corecognizable. Then there are programs F and G which recognize and
corecognize L, respectively. That means that whenever x ∈ L, F accepts x (and G either accepts or loops
on x), and whenever x /∈ L, G rejects x (and F either rejects or loops on x). We construct a new program P
which simulates F and G in parallel. The exact nature of the simulation isn’t important; maybe it alternates
running single lines of code from F and G, keeping them separate from each other. If the simulation of F
accepts, P accepts, and if the simulation of G rejects, P rejects. We know that exactly one of these will
happen, depending on whether x ∈ L. If x ∈ L, P will accept x, and if x /∈ L, P will reject x. Thus P
decides L, so L is decidable.

Since we know the halting problem is recognizable but not decidable, it must not be corecognizable.

There’s another equivalent way to define recognizability (actually multiple, but one that is important to us).
Let L be a decision problem. We will see that L is recognizable if there is a program P which always halts,
such that for every x ∈ L, there is some positive integer n such that P (x, n) accepts, and if P (x, n) accepts,
then x ∈ L. We say that n is a certificate for x; we can use n convince the program that the answer to the
question corresponding to x is ‘yes.’

Theorem 1.4. This is an equivalent definition of recognizability. That is, a decision problem L is recognizable
iff there is a decidable decision problem D such that



Week 1: Computability and Decision Problems 1-3

• If x ∈ L, there is a positive integer n such that (x, n) ∈ D

• If (x, n) ∈ D, then x ∈ L.

Before reading the proof, make sure you understand what this theorem is saying. If you’re feeling up to it,
try to prove it yourself. The idea of the proof is that the certificate n that convinces you that x ∈ L is the
number of steps the program that recognizes L takes to accept on input x.

Proof. Suppose L is recognizable. Let F be a program that recognizes L. We construct a decision problem
D satisfying the conditions: given x and n, does F (x) accept within n steps? If x ∈ L, then F (x) must
accept at some point, so there is some n such that (x, n) ∈ D. If (x, n) ∈ D, then F (x) accepts within n
steps, so in particular F (x) accepts, and thus x ∈ L. Finally, D is decidable; the program which, on input x
and n, simulates F (x) for n steps and accepts if the simulation accepted and rejects otherwise, decides D.

Now suppose there is a decision problem D satisfying the conditions decided by a program P . We write a
program that recognizes L. On input x, for each positive integer n in order, run P (x, n). If P (x, n) accepts,
accept; otherwise move on to the next n.

If x ∈ L, then this program will eventually find an n such that (x, n) ∈ D, and accept. If x /∈ L, then no
such n will work, and the program will run forever.

Exercise 2. Give an equivalent definition of corecognizability along the lines of Theorem 1.4, and prove
that it’s equivalent (you can, but don’t have to, use Theorem 1.4 in your proof).

Decision problems are organized into complexity classes. A complexity class contains all the decision prob-
lems that can be ‘easily solved’ by a program; the meaning of ‘easily solved’ is what distinguishes different
complexity classes. When ‘easily solved’ means ‘decided,’ we have the complexity class of decidable prob-
lems, called R (for ‘recursive,’ an older word for ‘decidable’). When ‘easily solved’ means ‘recognized’ or
‘corecognized,’ we have the classes RE and coRE (for ‘recursively enumerable,’ an older term describing
an alternate definition of ‘recognizable’). There are hundreds of named complexity classes, a few of which
we’ll get to know in this class. A table of some of the important ones for our purposes is at the end of these
notes; if you want to see more, visit complexityzoo.uwaterloo.ca for descriptions of complexity classes or
https://www.math.ucdavis.edu/~greg/zoology/diagram.xml for an interactive visualization.

We define the complement S of a complexity class S as the collection of the complements of languages in
S. Lemma 1.2 can then be expressed as coRE = RE. Lemma 1.3 can be expressed as R = RE ∩ coRE
(the symbol ∩ is for intersection; A ∩ B is the collection of things that are in both A and B). The relation
between R and RE is analogous to the relation between P and NP (complexity classes we’ll see more of
later), so it would be reasonable to use NR for RE, the N standing for ‘nondeterministic,’ which sort of
means ‘with guessing.’

1.3 Where we’re going

In this class, we’ll get to know some complexity classes including P, NP, PSPACE, and maybe L, NL,
and others. These are all defined by replacing ‘easily solved’ with various precise definitions, such as only
allowing a relatively small (polynomial) amount of space or time with which to answer yes/no questions.
We’ll introduce the concept of completeness for a complexity class, which is a way of getting at ‘as hard
as possible’ among the decision problems in the class. We’ll find complete problems for various complexity
classes, and learn how to use them to find more complete problems. We’ve already seen one: the halting
problem is RE-complete.

complexityzoo.uwaterloo.ca
https://www.math.ucdavis.edu/~greg/zoology/diagram.xml


Week 1: Computability and Decision Problems 1-4

In order to prove that problems are complete for NP or other complexity classes, we’ll introduce the concept
of Turing machines, which is a simple model of computation that is as powerful as any computer, but that
it’s relatively easy to prove things about. You can think of Turing machines as a bare-bones, hard to work
with programming language.

Ultimately, we’ll be able to take puzzles like Sudoku of TipOver, games like Mario or Chess or puzzles like
Rush Hour, and games like Braid or Recursed, and show that they’re NP-complete, PSPACE-complete,
and RE-complete, respectively.

Aside: It’s pretty easy to show many inclusions of complexity classes, such as

L ⊂ NL ⊂ P ⊂ NP ⊂ PSPACE ⊂ EXP ⊂ NEXP ⊂ R ⊂ RE.

However, aside from a few examples, notably L 6= PSPACE, P 6= EXP, and the results we already have
about RE and R, it’s extremely difficult to show that complexity classes are different. The famous P vs NP
problem conjectures that P 6= NP, and it seems very likely to be true, but nobody has a good idea of how we
could prove it (see https://www.scottaaronson.com/papers/pnp.pdf for a detailed, somewhat accessible
survey). In fact, it’s possible given our current knowledge that many of the listed complexity classes our the
same. If P = PSPACE, then most of what we do in this class would be silly in hindsight, since we’re mostly
studying problems somewhere between P and PSPACE and trying to classify them, but it’s possible this
classification is meaningless. However, this seems extremely unlikely, and hopefully this class will help you
understand why that is.

Name Stands for Meaning of ‘easily solved’ Complete problem
L log space answered in logarithmic space undirected reachability
NL nondeterministic L verified in logarithmic time directed reachability
P polynomial answered in polynomial time formula evaluation
NP nondeterministic P verified in polynomial time formula satisfiability
coNP complement of NP verified false in polynomial time formula unsatisfiability
PH polynomial hierarchy generalization of NP
PSPACE polynomial space answered in polynomial space quantified boolean formula
EXP exponential answered in exponential time halt in k steps
NEXP nondeterministic EXP verified in exponential time succinct Hamiltonian path
EXPSPACE exponential space answered in exponential space regex equivalence
R recursive answered at all
RE recursively enumerable verified at all program halts
coRE complement of RE verified false at all program loops
AH arithmetical hierarchy generalization of RE

https://www.scottaaronson.com/papers/pnp.pdf

	The Halting Problem
	Decision Problems
	Where we're going

