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Lecture 1
Newton, Maxwell, and Great Uni-
fications in Physics

1 Introduction

Welcome to Summer HSSP Relativity class. I am Illan Halpern, a rising senior
majoring in Physics and Mathematics. In this class I want to share a little bit
on the fascinating topic of Relativity. Let’s first take a look at the syllabus to
familiarize ourselves with the course structure.

[Logistics Blurb] Feel free at any time to ask me questions!

For many centuries it was believed that space and time were absolute. Space
always there, regardless of the observers. And likewise, time always flowing the
same way towards the future. Even though this view is seemingly consistent with
our everyday experiences, it started to be challenged at the end of the nineteenth
century. Our world view was not consistent anymore, and we needed to get rid of
some of our old preconceptions, and replace them by some new ideas. And that’s
when Einstein came in. With special relativity, he was able to reconcile observation
and theory. He was able to reconcile Maxwell and Galileo, at the expense of having
to modify Newtonian mechanics. Today’s lecture will be devoted to understanding
the historical context that lead such a huge chance in paradigm to be needed. We
will review the pre-Newtonian world-view, as well as the revolutions of Newton
and Maxwell. But first, what is relativity?

As I mentioned, and will be made more explicit soon, in the beginning of
the 20th century, there was a mutual inconsistency if we tried to put Newton,
Maxwell and Galileo together. Many people were trying to modify some of these
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theories to make the whole consistent, but it was Einstein who succeeded. He pre-
served Galileo’s principle of relativity and Maxwell’s electromagnetism unchanged,
and modified Newtonian mechanics. In Einsteinian mechanics, known as Special
Relativity, space and time are no longer absolute, and famous effects such as
space-contraction and time dilation arise. The theory of special relativity is what
we will spend most of the course talking about.

Soon after he came up with Special Relativity, Einstein realized he had replaced
the original problem with a new one. If his theory was correct, then Newtonian
gravity could not be. A new theory of gravity was needed, and Einstein was deter-
mined to find it. Ten years after publishing Special Relativity, Einstein succeeded
in obtaining his theory of gravity, know as G

¯
eneral Relativity. General relativ-

ity had many experimental successes including correctly explaining the precession
of Mercury, as well as correctly predicting the deflection of light. General rela-
tivity also had many surprising predictions such as black holes and cosmological
evolution. General Relativity will be the topic of the last two lectures.

Einsteins relativity was a great revolution in physics. So were the theories of
Maxwell and Newton. What do all of those have in common? They can all be seen
as some sort of unification. Einstein unified time and space, matter and energy.
Maxwell unified the theories of electricity, magnetism and (surprisingly!) optics.
Newton unified terrestrial and celestial mechanics. Following the historical order,
let’s start with Newton.

2 The Newtonian Revolution

Before Newton, the model of world was the one developed in Ancient Times by
the likes of Aristotle and Ptolemy. It was the model of celestial spheres. In this
model, the first sphere is the sphere of the Earth, where everything is constantly
changing, and we terrestrial laws can be applied. The other spheres were the
celestial spheres, or the spheres of the skies, were everything is immutable and
and celestial laws harmony and perfection are applicable. The last of the celestial
spheres is the sphere of the fixed stars.

Some years prior to Newton’s birth, this view started to be challenged by
Galileo, who observed moon craters and moons of Jupiter. However, it was Newton
who formulated the first universal laws. These include his laws of mechanics as
well as his law of gravitation. His law of gravitation is universal because it can be
applied to both terrestrial and celestial phenomena. Before we talk about gravity,
let’s briefly review Newton’s laws of motion.

The first law of motion, or the Law of Inertia is usually stated as “A body
at rest stays at rest, and a body in motion stays at motion, unless acted upon by
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an external force. ” Now, what is a force? The second law talks about forces. It
relates a the force applied to a body to its acceleration by

F = ma = m
d2x

dt2
(1)

The third law is the law of action and reaction: it states that action and
reaction forces are equal in magnitude and opposite in direction. Now, let’s take
a look at what those laws mean.Why do we need the first law? Stated this way
it seems that the first law is simply a corollary of the second. Can’t we just plug
F = 0 in the second law to derive the second? It is certainly true that the second
law implies that the acceleration is zero at a body upon which no forces act.
However, the first law has an important physical content that is often overlooked.

What was missing in the description of the first law I gave above was the
restriction to inertial frames. The first law should read “In an inertial frame,
a body in (uniform) motion stays in (uniform) motion and a body at rest stays
at rest.” This law serves as a definition of inertial frames. This is very important
since he only claim the validity of his laws in inertial frames. So, by definition, an
inertial frame is one in which the first law holds. In such frames, one can apply
the second and third laws. If on the other hand, there are no inertial frames,
then we can’t apply Newton’s laws of motion. Newton makes a claim about the
physical world when he says there is a class of inertial frames. Moreover, he gives
an example of an inertial frame: that of the fixed stars.

To apply his laws in an inertial frame, we need to supply a coordinate system.
To have an acceleration, we need to have position on time. Once both position
and time are well defined, one can measure the acceleration as the second time
derivative of position. We can define a coordinate system in Newtonian physics
using rulers and a clock. As a body moves, one can look at those measure instru-
ments to determine its position as a function of time, and therefore calculate the
acceleration.

Given an inertial frame can we find others? According to Galileo we can.
Galileo was the first one to formulate the principle of relativity , according to
which the laws of motion are be you at rest or uniformly moving. Imagine you
are inside a train cabin with no windows. If there are no windows, then according
to Galileo’s principle of relativity, it is impossible to tell if you are at rest or
uniform motion. Do Newton’s laws follow this relativity principle? In order for
this question to be meaningful, we need to be able to relate the coordinates in both
frames: the ground frame and the train frame. Galilean prescription for doing this,
known as Galilean transformation is
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x′ = x− vt
t′ = t (2)

The primed coordinates correspond to the train coordinates. v is the velocity
of the train as measured from the ground coordinate system. It is assumed that
the origins of both systems coincide at time t = t′ = 0. If that is not the case, then
a translation is also needed to related the two coordinate systems. How would the
second law read in the train frame?

F = m
d2x′

dt′2
= m

d2(x− vt)
dt2

= m
d2x

dt2
(3)

So, Newton’s second law still holds in the train frame, as long as the force and
the mass are the same in both coordinate systems, and the law holds in the ground
system. This implies that if the ground system is inertial so is the train system.
Using Galileo’s Relativity principle we can now start with one inertial system, and
get infinitely many: one for every value of v.

Let’s look again at the second law. In order for it to be experimentally verifiable
a force law is need. Newton provided that by giving his law of gravity. The
gravitational force between two bodies of massesm1 andm2, and located a distance
r apart from each other, is given by:

F =
Gm1m2

r2
(4)

where G is a universal constant known as Newton’s constant, or gravitational
constant.What was so revolutionary about this law was its universal character. It
can both be applied to describe an apple falling from a tree, as well as to describe
planetary motion.

3 The Revolution of Maxwell

Let’s now skip a couple hundred years, from the 17th to the 19th century. Electric
and magnetic phenomena had been observed since ancient times. However, only
recently it had started being organized in laws. Maxwell was the one to organize
all these laws and give a sense of completeness to the theory. His laws describe
electricity and magnetism in terms of fields. His four equations (describing the
dynamics of the fields) together with Lorentz force law were supposed to give a
complete description of electricity and magnetism. The laws were not created by
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Maxwell, though he fixed one of them. He put them together in a unique scheme,
and derived the consequences.

Before we can write down Maxwell’s equations, we need to know what a field
is. A field is a function from space to a target set. A scalar field assigns to each
point in space a number. An example of scalar field is temperature: each point in
space has a temperature. Vector fields associate to each point in space a vector.
Electric and magnetic fields are of this kind. The electric field is denoted by ~E
and the magnetic field is denoted by ~B. The over arrow is to remind us that these
are vectorial quantities, and therefore posses magnitude and direction.

Maxwell’s equations describe how fields evolve in the presence of electric charges
and currents. Lorentz force law tells how these fields affect the motion of particles.
It is a force law just like newton’s gravity law, and so the Lorentz force can be
plugged into Newton’s second law to give an acceleration. Lorentz force law is:

~F = q ~E + q~v × ~B, (5)

where q is the electric charge, and v is the velocity of the particle. The ~v× ~B term
is the cross product between the vectors ~v and ~B. The cross product of vectors ~X
and ~Y is the vector having magnitude | ~X||~Y | sin θ, where θ is the angle between
~X and ~Y , and direction given by the right-hand rule.

The four Maxwell’s laws are: Gauss law, no-magnetic monopoles law, Ampere’s
law, Faraday’s laws. Gauss law describes how charges produce an electric field. The
analog of Gauss law for magnetism states that there are no “magnetic charges,” or
monopoles. So where then does ~B come from? Ampere’s law provides the answer:
the magnetic field is produced by currents, or moving electric charges. Faraday
law started unifying electricity and magnetism by showing how magnetic field can
induce an electric field. Maxwell completed this unification by fixing Ampere’s law
to show that an electric field can also induce a magnetic field.

3.1 Gauss Law and No Magnetic Monopoles

For a static charge distribution Gauss law is equivalent to Coulomb’s law. Coulomb’s
law is’:

~E =
kQ

r2
r̂, (6)

where ~r is the relative position vector, r = |~r| and r̂ = ~r
r .

Gauss Law states the same thing in a different way. It relates the electric flux on
a surface to the charge enclosed. We can represent Coulomb’s law graphically using
field lines. In this schematic representation, the direction of the lines represent the
direction of the electric field and their density represents the magnitude of the
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electric field. The electric flux is a measure of the number of field lines crossing
a surface. If we imagine an infinitesimal surface with normal area vector d~a, then
the electric flux on the surface is given by ΦE = ~E · d~a. For an extended surface,
the total flux is obtained by integrating the flux at each infinitesimal area element.

ΦE =

∫
S

~~E · d~a (7)

Gauss law says that the electric flux on a closed surface is proportional to the
charge enclosed by it.

ΦE =

∮
S

~E · d~a =
Q

ε0
(8)

The constant ε0 is called the vacuum permittivity. The circle on the integral
in to remind us that in order for Gauss Law to be applicable, the integral must be
done over a closed surface.

The magnetic flux ΦB is defined analogously by simply replacing ~E with ~B in
equation (7). The analogous of Gauss Law for magnetism is

ΦB =

∮
S

~B · d~a = 0 (9)

This is the statement that there are no magnetic monopoles, or magnetic
charges.

3.2 Ampere’s Law and Faraday’s Law

The source of magnetic field are electric currents. The current in a wire is defined as
I = dQ

dt , the rate at which charge passes through a normal cross-sectional area of the
wire. For a static charge distribution, we have seen that Gauss Law is equivalent
to Coulomb’s law. In magnetism, we have the same thing: for a stationary current,
Ampere’s law is equivalent to the Biot-Savart Law. Ampere’s law is:∮

C

~B · d~l = µ0I (10)

This law state that the integral of the magnetic field along a closed curve (a
loop) is proportional to the current that crosses the area enclosed by the loop.
The constant of proportionality µ0 is referred as the vacuum permeability. This is
in a way analogous to the Gauss Law. Gauss Law can be used to calculated the
electric field, while Ampere’s Law can be used to calculate the magnetic field. The
analogous of Coulomb’s law would be Biot-Savart Law:
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~B =
µ0
4π
I
d~l × r̂
r2

(11)

Faraday’s law describes how a time-varying magnetic field induces an electric
field. The effect of this law can be seen when one moves a wire next to a magnet,
a magnet next to a wire, or changes the intensity of the magnet keeping both
fixed. In all three cases, there will appear a current flowing through the wire. The
current is related to the magnetic flux across the loop of wire by

I =
1

R
]
dΦB

dt
, (12)

where R is called the resistance of the loop. What causes the electron in the
current to move? It is an electric field. So, any other way of understanding
magnetic induction is through Faraday’s law:∮

~Ed~l = −dΦB

dt
(13)

This law started to unify electricity and magnetism since it shows how the
magnetic field can induce an electric field.

3.3 Maxwell’s Equations and Electromagnetic Waves

Maxwell notice that Ampere’s law was not well-defined. Given a loop, there is an
ambiguity in the choice of enclosed surface. The choice of different surfaces, can
lead to different fluxes, giving different predictions. Maxwell noted that if another
term was added to the equation, then the sum would be independent of the surface
chosen. With this fix, Ampere’s law becomes:∮

~Bd~l = µ0I + µ0ε0
dΦE

dt
(14)

The set of equations (8), (9), (13) and (14) are called Maxwell’s equations. The
new term added to equation (10) in equation (14) is very important conceptually. It
shows that not only the magnetic field can induce an electric field, as in Faraday’s
law, but also an electric field can induce a magnetic field. This suggests that
electromagnetic fields can self propagate.And indeed, Maxwell found a vacuum
solution of his equation that takes the form of a propagating wave. From his
equation he was also able to derive that the speed of such an electromagnetic
wave would be 1√

µ0ε0
. The values of the constants µ0 and ε0 had already been

measured experimentally, so he just plugged the numbers to get the speed of an
electromagnetic wave. To his awe, the calculated value was 3 × 108m/s, which
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happened to be the measured speed of light! He was forced to conclude that light
is but a disturbance of the electromagnetic medium. Light is an electromagnetic
wave! In attempting to unify electricity and magnetism, Maxwell had also unified
them to optics!

So, this was the world that Einstein saw himself in. As we will see next time,
it is a logical impossibility for all of Galileo’s principle of relativity, Newtonian
Mechanics, and Maxwellian Electromagnetism to be right. To solve this problem,
Einstein created his theory of Special Relativity.
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