Computational Complexity Theory Summer HSSP 2018

Week 3: Reductions and Completeness
Dylan Hendrickson MIT Educational Studies Program

3.1 Reductions

Suppose I know how to solve some problem quickly. How can I use this ability to solve other problems
quickly? A reduction is one way to do this.

Definition 3.1. Let A and B be decision problems. A reduction f from A to B is a Turing machine which
takes as input instances of A, and outputs instances of B, such that the answers to the input and output
questions are the same. That is, for any instance x of A, z € A iff f(x) € B.

If there is a reduction from A to B, we say A is reducible to B, and write A <,,, B.
This kind of reduction is called a mapping reduction or many-one reduction, to contrast with other types of
reductions such as oracles (which we probably won’t discuss).

If we know how to solve B, and have a reduction from A to B, we can solve A. On the other hand, if you
can solve A, the reduction from A to B doesn’t help you solve B. So you can think of B being ‘at least as
hard’ to solve as A.

Lemma 3.2. If A <,, B and B is decidable, then A is decidable. If A <,, B and B is recognizable, then A
is recognizable.

Exercise 1. Prove lemma [3.2]

Lemma 3.3. <, is a preorder, meaning it satisfies these properties:

o <,, is reflexive: for any decision problem A, A <,, A.
o <,, is transitive: for any decision problems A, B, and C, if A <,, B and B <,,, C, then A <,,, C.

Exercise 2. Prove lemma [3.3]

The Post Correspondence Problem (PCP) is the following decision problem: given a collection of ‘dominoes,’
each of which has a string of symbols on each side, is there a nonempty sequence of these dominoes such
that the total top string and bottom string are the same?

For example, we might have these dominoes:

o] <))
]]] L] [

The strings on the top and bottom are both abcaaabe.

One valid sequence of dominoes is

3-1

Week 3: Reductions and Completeness 3-2

A few notes: the empty sequence, which has the empty string on the top and bottom, doesn’t count. You
can dominoes multiple times. You can’t flip dominoes over or anything like that; they have to be upright.
There may be multiple valid sequences (in fact, if there’s one, there are infinitely many); the question is
whether there are any.

Theorem 3.4. PCP is undecidable.

Proof. We give a reduction from HALT to PCP, showing HALT <,, PCP. Since HALT is undecidable, by
lemma[3.2] PCP is undecidable. We actually use a slight variation on PC P, where one domino is designated
as the start domino (it’s possible to reduce this version of PC'P to the original).

Given a Turing machine and input, we want to find a collection of dominoes that only have a solution if
the Turing machine halts. We’ll do this by making a successful sequence of dominoes correspond to the
computation history of the Turing machine. The winning string on the dominoes will have the form

#Cr#tCo e #Cp—#t

where C; is the configuration of the Turing machine at the ith time step, and # is a symbol to separate
them. Each configuration is a sequence of tape symbols, with one symbol indicating the Turing machine’s
head. For example, 01¢40010 — 10 — 001 would indicate that the tap has 010010 — 10 — 001, and the Turing
machine is in state g4 looking at the third cell of the tape (containing a 0).

We’ll always have the bottom row of the dominoes one configuration ahead of the top row. In order to match
the bottom row, we have to pick dominoes with the correct top row, with the bottom row of these dominoes
designed to produced the next configuration.

Let’s start building dominoes. The first configuration has the Turing machine it its start state looking at the
left end of the input, so we’ll make the start domino do that, assuming the start state is ¢o and the input is
wiwg ... Wk:

]
#Hqows ... W FH

Since most of the tape doesn’t change each step, we want dominoes to copy each symbol that can be on the

BRERN

Now we want to simulate the Turing machine head. Suppose it’s in state ¢ and reads a on the tape. If it
writes b, moves right, and switches to state ¢’, we put a domino

qa
bq'
If it writes b, moves left, and switches to ¢’, then for each symbol ¢, we put a domino
cqa
q'ch
For separations between configurations, we want to be able to add extra blanks to extend the tape, so we

hav (S the dOHliHOQS
0| I | 4L

So far, these dominoes will simulate the Turing machine until it halts. Once it halts, we want to get the top
and bottom strings to match. We do this by having the halt state ‘eat’ the entire tape, so for each symbol

a we have:
aQhalt Ghalt@
Ghatt |’ | Qhalt

Week 3: Reductions and Completeness 3-3

After the Turing machine halts, this gives us a sequence of configurations with the tape shrinking by one
cell each time. At the end of this, the final configuration is just guqi;- So the domino strings look like

A
< HQnanH

We add one more domino

[Qhalt##]
#

Putting this domino on the end makes the strings match.

If the Turing machine halts, this collection of dominoes will have a matching sequence. If the Turing machine
doesn’t halt, trying to build a matching sequence will take forever, as we continue to simulate the Turing
machine forever. So this is a reduction from HALT to PCP, and HALT <,, PCP. By lemma[3.2] if PCP
is decidable then HALT is decidable; since we know HALT is undecidable, PC'P is undecidable. O

Exercise 3. Suppose A and B are both decidable. When is A <,,, B?

3.1.1 Polynomial-time reductions

Since we care about what we can do quickly, not just what we can do at all, we’ll usually restrict ourselves
to polynomial-time reductions (the are other restrictions, such as log-space reductions, but they aren’t as
useful). A polynomial-time reduction is simply a reduction that runs in polynomial time (in the input
length). If there is a polynomial-time reduction from A to B, we write A <p B. For example, the reduction
from HALT to PCP takes only polynomial time, so HALT <p PCP.

If we have a polynomial-time reduction from A to B, and we can solve B easily, then we can solve A easily.

Lemma 3.5. Suppose A <p B.

o [fBeP, then AcP

e If Be NP, then A € NP

e If B € coNP, then A € coNP

o If B € PSPACE, then A ¢ PSPACE
Exercise 4. Prove lemma [3.5]
Lemma 3.6. <p is a preorder (it satisfies the properties in lemma .
Exercise 5. Prove lemma [3.6]

Exercise 6. Suppose A, B € P. When is A <p B?

3.2 Completeness

We now have a way to compare the relative difficulty of decision problems. This raises the natural question
of what the hardest problems in NP or PSPACE are. It’s not obvious that there exist ‘hardest’ problems;
maybe there are two hard problems in NP, neither of which is reducible to the other. It turns out that
many (but not all, e.g. PH) complexity classes have maximally difficult problems.

Week 3: Reductions and Completeness 3-4

Definition 3.7. Let C be a complexity class and A be a decision problem. We say that A is hard for C, or
C-hard if for every problem B € C, B <p A. If A is C-hard and A € C, we say that A is C-complete.

Technically, this is only complete under polynomial-time reductions. You might care about completeness
under arbitrary reductions, or under log-space reductions, etc.

Theorem 3.8. HALT is RE-complete.

Proof. We know HALT € RE. To show that HALT is RE-hard, let A € RE, and let M be a Turing
machine which recognizes A. We show A <p HALT by giving a polynomial-time reduction from A to
HALT.

Construct a new Turing machine M’ which is the same as M except that whenever M would reject, M’
enters an infinite loop. Given an instance x of A, we construct the instance (M’,z) of HALT. This clearly
takes only polynomial time.

For this to be a reduction, we need = € A exactly when (M’ ,z) € HALT. If x € A, then M accepts z, so
M’ also accepts and thus halts on z. If z ¢ A, then M either rejects or loops on z, so M’ doesn’t halt on z.
Hence this is a reduction from A to HALT, completing the proof. O

Corollary 3.9. PCP is RE-complete.

Proof. Since it’s easy to check whether a sequence of dominoes works, we can use it as a certificate to verify
PCP. Thus PCP € RE. Let A € RE. We know that A <p HALT and HALT <p PCP, so A <p PCP.
Hence PCP is RE-hard. O

Lemma 3.10. If A <p B and A is C-hard, then B is C-hard.
Exercise 7. Prove lemma [3.100

Exercise 8. Which problems are P-complete?

Lemma lets us show lots of problems complete for a complexity class once we have one such problem.
So we want to find complete problems for the complexity classes we care about.

Definition 3.11. A boolean formula is a collection of variables joined with & (and), V (or), and — (not),
such as (a vV b) & (—a V —b).

A satisfying assignment of a boolean formula is an assignment of ‘true’ (T') or ‘false’ (F') to each variable
that makes the formula true. The formula above has the two satisfying assignments ¢ = T,b = F and
a=Fb="T.

SAT is the following decision problem: given a boolean formula, does it have a satisfying assignment?

Theorem 3.12 (Cook-Levin Theorem). SAT is NP-complete.

Proof. 1t’s easy to check whether an assignment of the variables makes a formula true, so SAT is in NP.
Showing that SAT is NP-hard is more complicated. Let A € NP, and let M be a Turing machine which
verifies A; i.e. it takes in pairs (w, ¢) where w is an instance of A, and w € A iff there is a ¢ such that M (w, ¢)
accepts. We'll find a complicated boolean formula that simulates M so that it has a satisfying assignment
if and only if w € A.

Consider a table showing M’s computation; each row is one timestep, and each column is one cell of the
tape. Since M runs in polynomial time, say ~ n*, the table has size ~ n2?*; big but polynomial. Our formula

Week 3: Reductions and Completeness 3-5

will have a variable x;;, for each row i, column j, and symbol s, representing whether cell j contains s and
time 4. It will also have a variable y;;, for each row ¢, column j, and state g, representing whether the Turing
machine is in state ¢ looking at cell j at time 3.

Now we make a bunch of subformulas, and combine them with ANDs.

e The first row is the initial configuration, so we take y114,, and x1;,, for each j, where w; is the jth
symbol in the input. We allow the portion of the first row corresponding to the certificate ¢ to be
anything.

e For each i, j, and symbols r # s, =@, V —x45s. For each row 4, columns j and k, and states p and g,
—Yiip V TWikg Unless j = k and p = ¢. This enforces that each cell only has one symbol at a time, and
the head of the Turing machine is in only one place and state at a time.

® Yirlguee V Yigjsqaeer Where iy is the last row of the table and the middle subscript ranges through all
cells. This makes sure that the Turing machine accepts.

e For each i, j, and s, we have —@;js V Z(iy1);s V Yijqo vV * V Yijq,, » With the final subscripts on y ranging
through all states. This makes the tape not change between timesteps away from the Turing machine
head.

e For each i, j, ¢, and s, we have ~(2i;s & Yijq) V (Tijr & Y(it1)kp), Where v, k, and p depend on what
the Turing machine does when it reads s while it state q. r is the symbol it writes, p is the state it
switches to, and k is j + 1 or j — 1 if it moves right or left, respectively. This simulates the Turing
machine’s head, by forcing a new head position and symbol when the head is at position j, state g,
reading s.

A satisfying assignment of the resulting formula corresponds to an accepting computation history of M on
(w, ¢) for some value of c. This the formula has a satisfying assigment if and only if there is a ¢ that makes
M accept, which is true exactly when w € A. So this is a reduction from A to SAT.

Each portion of the formula is polynomially long, and there are polynomially many portians, each of which
is trivial to construct. So we construct the formula in polynomial time. Thus A <p SAT, completing the
proof that SAT is NP-hard. O

Now that we have an NP-complete problem, we can use lemma [3.10] to show more problems NP-complete.
To begin, there is a variant of SAT that’s easier to work with

Definition 3.13. A literal is a variable or its negation. A clause is an OR of variables. A formula is in
conjunctive normal form (cnf) if it is an AND of clauses. A formula is 3cnf if it is cnf and each clause has
at most three variables.

3S AT is the following decision problem: given a 3cnf boolean formula, does it have a satisfying assignment?
Exercise 9. Show that 3SAT is NP-complete. You can do this either by giving a reduction from SAT, or
by modifying the proof that SAT is NP-complete so that the formula that comes out is 3cnf.

Having the structure of clauses makes it easier to reduce 3S AT to other decision problems. For example,
VertexCover is the following decision problem: given a graph G and a number k, is there a set of k vertices
in G such that every vertex is either in the set or connected by an edge to a vertex in the set?

Lemma 3.14. VertexCover is NP-complete.

Week 3: Reductions and Completeness 3-6

Proof. The set of k vertices serves as a certificate, so VertexCover € NP. To show that it’s NP-hard, we
provide a reduction from 3SAT (using lemma [3.10).

Given a 3cnf formula ¢, we construct a graph G and number & such that G has a vertex cover of size k iff ¢
is satisfiable. For each variable x of ¢, there are there vertices x, -z, and xg, all connected. For each clause
C of ¢, there is a vertex C' connected to the vertices labelled with literals in C. Set k to be the number of
variables of ¢.

Let’s see whether (G, k) € VertexCover. For each variable x, to satisfy xg, we need to pick one of x,
x, or mx. Since there are k variables, that’s all the vertices we get. x¢ isn’t connected to anything other
than x and —x, so we might as well pick either z or —z. This is equivalent to picking an assigment for
¢. The set of vertices we pick works of all the clauses get hit: that is, for each clause vertex, we need to
pick at least one of the vertices connected to it. This is equivalent to the assigment satisfying that clause.
So (G, k) € VertexCover iff ¢ € 3SAT. Since the construction of G and k takes only polynomial time,
3SAT <p VertexCover, so VertexCover is NP-hard. O

As you can see, it’s much easier to prove problems NP-complete once we know SAT is NP-complete. As we
prove more problems NP-complete, we get more options for further such proofs. We could give a reduction
from VertexCover instead of from 3SAT to prove another problem NP-hard, if we thought it would be
easier.

NP-completeness relates to the P vs NP problem.
Lemma 3.15. Let A be NP-complete. Then A € P if and only if P = NP.
Exercise 10. Prove lemma [3.15]
Exercise 11. If P = NP, which problems are NP-complete?
Exercise 12. Pick one (or more) of the following decision problems, and show it’s NP-complete.
e 3COLOR: given a graph G, can you color each vertex of G with one of three colors so that no two
vertices of the same color are connected by an edge?

e CLIQUE: given a graph G and number k, is there a set of k vertices of G that are all connected by
edges (called a k-clique)?

e HAMPATH: given a directed graph G, is there a path through G that visits every vertex exactly
once?

e SUBSETSUM: given a numbers n; and a number k, can you write k as a sum of some n;? (You
can’t reuse n;. We care about polynomial in the length of the input, not in the wvalue of the input,
which can be much larger. The length of a number is the number of digits it has.)

Exercise 13. Find some examples of coNP-complete problems.

Exercise 14. Pick your favorite logic puzzle (Sudoku, Nurikabe, Slitherlink, etc.). Is it NP-complete? You
can assume that all of the problems in exercise [12] are NP-complete.

	Reductions
	Polynomial-time reductions

	Completeness

