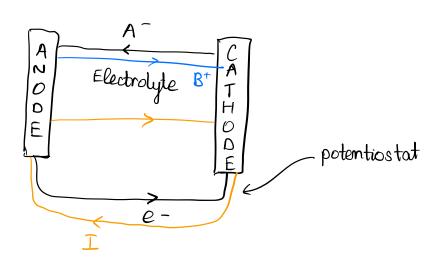
Lecture 1:

- I) Introduction to Battery and Fuel Cells:
 - A) What is an electrochemical cell?
 - B) Botteries (Energy and Power density, egiciency)
 - C) Fuel Cells (Phosphoric acid Fuel Cell, Akaline Fuel Cell)

I) A) Electrochemical cell:

Components: Two electrodes (Cathode and Anode)

(WE and CE-ij people want to

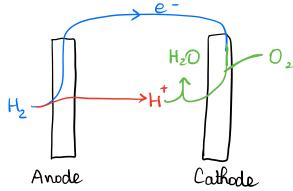

Study the kinetic at one electrode)

Electrolyte (ylow of ions)

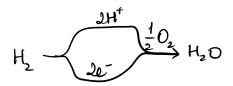
External conductor (ylow of electrons)

Lectronal circuits

<u>Representation</u>:



Electrode (mobile species: electrons): conductivity 10° to 104 S/cm e.g: Metal, semiconductor


Electrolyte (mobile species: ions, NO electrons): conductivity 10⁻⁴ to
10⁻¹ S/cm
e.g: dissociated salt, molten salt, polymer (Nayion, FAA).

Difference between electrochemical reaction and chemical reaction

Electrochemical rxn

generate electricity

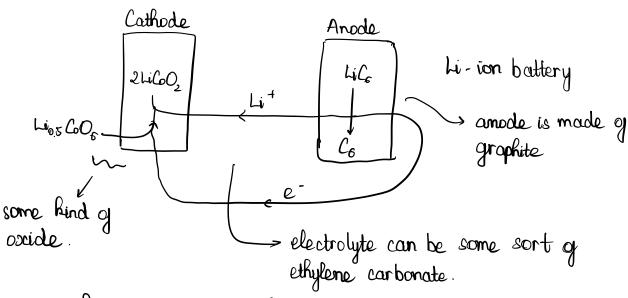
electron pass through potential dijjerence between 2 electrodes

Chemical rxn

$$H_2 + \frac{1}{2}O_2 \rightarrow H_2O$$

generate heat

electron pass through


potential difference

between two nuclei

B) Batteries:

A "sely-contained" electrochemical device which stores electrical energy.

Discharged reaction: LiC₆ + 2 LiC₀O₂ -> C₆ + 2 LiC₀O₂

Primary -> Non-rechargeable

Secondary -> Rechargeable

Metric:								
	Gravimetric	Volumetric						
Capacity	$Q_g = \frac{Q}{m} = \frac{nF}{MW}$	$Q_V = \frac{Q}{V}$						
Energy Density	Qg.V	Q. V						
Power Density	$\iota_{q} \; V$	iv. V						

$$\frac{C - \text{rate} = \frac{i}{Q} \quad \text{C/s}}{C} \quad \text{[=]} \quad \frac{1}{\text{time}}$$

e.g: $3\frac{1}{hour}$ means the cell is july discharged in $\frac{1}{3}$ hour

Eyicency:

On a charge basis:
$$q_c = \frac{Q_d}{Q_c}$$
 discharge $\frac{1}{Q_c}$ Columbic Eylicency

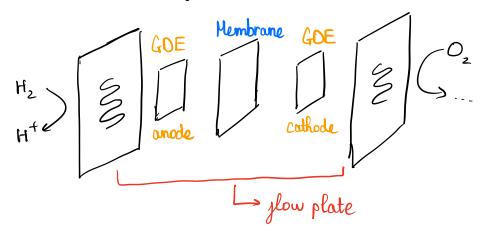
On an energy basis:
$$q_E = \frac{Q_d \cdot V_d}{Q_c \cdot V_c}$$

Escamples of battery:

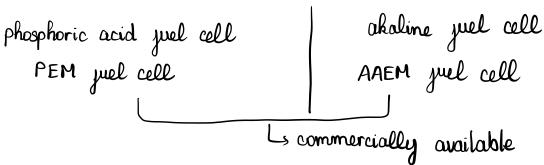
Primary:

Battery /	Anode	Cathode	reaction	u	Copacity (Ahlhg)
Leuanche	Zn	Mn02	Zn + MnO2 →ZnO+Mn2O3	1.6 V	224
Zinc - Air	Zn	O ₂	$Zn + 1/2O_2$ $\rightarrow ZnO$	1.65 V	658
Li-MnO,	Li	MnO,	Li + MnO ₂ →LiHnO ₂	3.1 V	286

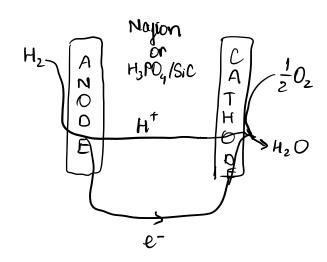
Secondary


Battery	Anode	Cathode	reaction	u	Capacity (Ah/kg)
Lead acid	Pb	P602	PbO2 + H2SO4 →PbSO4 + H2O	2.1 V	120
Nickel - Cadmium	Cd	NiOOH	Cd+2N:00H → N:(0H) ₂ + Cd(0H) ₂	1.35	181
	ι /	1		l	

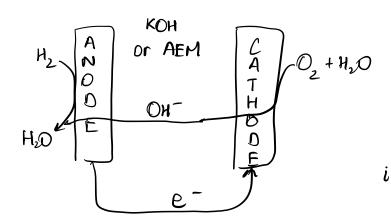
C) Fuel Cells:


An electrochemical cell which converts chemical energy of a just into electricity -> Not "self-contained" device

Typically O_2 and $H_2/CH_3OH/N$ -based substances \rightarrow Harness energy from oxidation reaction


Example: H_2/O_2 juel cell

H2/O2 just cell can operate in acid or basic conditions


Acid condition:

GDE is typically made up of Pt/C on carbon cloth.

Disadvantage: ORR is slow in acidic condition

Basic condition:

GDE can be non-previous metal

Disadvantage: AEM has low ionic conductivity

LO2 accumulation is O2

is taken from ambient air