

How To Write Math Proofs

Amber Bennoui

Objectives

- Direct Proofs
- Proof by Contradiction
- Proof by Contrapositive
- If, and only if
- Proof by Mathematical Induction
- Real World Applications

Direct Proofs

• Characterized by being simple and short; direct proofs can be done by using relatively basic techniques.

Proof that Divisibility is Transitive

- If *a* and *b* are two natural numbers, we say that *a* divides *b* if there is another natural number *k* such that b = ak. For example, 8 divides 24 because there is a natural number *k* (namely 3) such that 24 = 8k
- Theorem: If *a* divides *b* and *b* divides *c*, then *a* divides *c* and *b* divides *c*
- Proof: By our assumptions, and the definition of divisibility, there are natural numbers k_1 and k_2 such that $b = ak_1$ and $c = bk_2$. Consequently, $c = bk_2 = ak_1k_2$ and let $k = k_1k_2$. Now, k is a natural number and c = ak, ergo by the definition of divisibility, a divides c

Proof by Contradiction

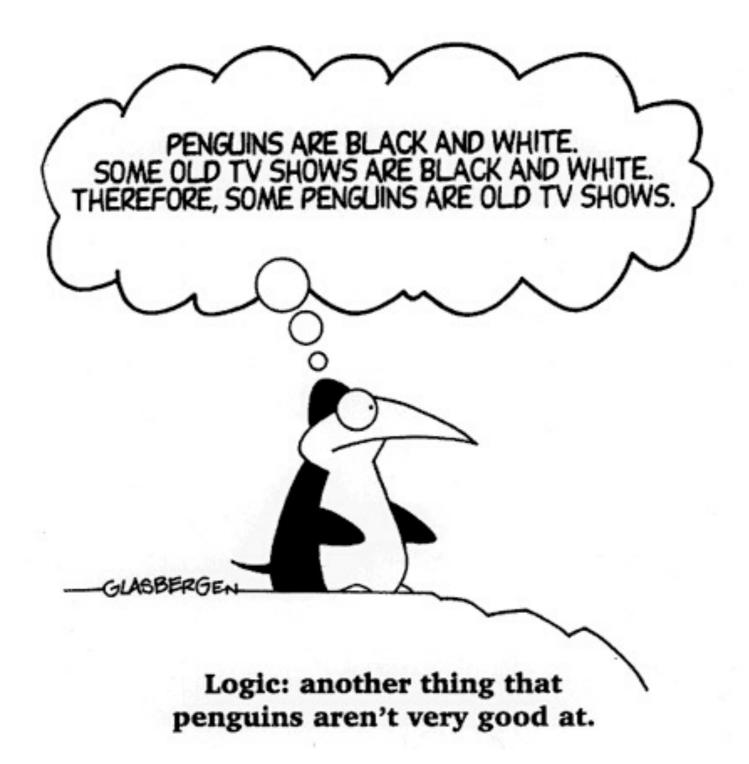
• When one states the opposite of what one wants to prove, prove the opposite is not possible.

Infinitely Many Primes

• Assume for contradiction that there is a finite number of primes. Thus, the set of primes can be represented as [a, b, c, ..., n]. The product of this set plus one, a -b - C ..., n + 1 represented by q, must be either prime or composite. Since each prime isn't divisible by anything else, and q can't be divisible by any a, q must be prime. Since q is a prime number not included in the set of all primes, it contradicts the assumption that all primes are in the list [a, b, c, ..., n]

Proof by Contrapositive

- Logically, the statements "p implies q" and "Not p implies not q" are equivalent
- For example, the contrapositive of the statement "If it's legal, then it's fresh" is "if it isn't fresh, it isn't legal" (please don't sue us Legal Sea Foods)
- This can be used in proofs by showing the contrapositive of a theorem is true, thus the theorem itself if true



Parity

- A number's parity describes whether it is even or odd; the parity of 3 is odd, the parity of 4 is even
- Even is defined as a number which can be represented by 2k, where k is an integer. Odd is defined as a number which can be represented by 2k + 1, where k is also an integer
- Theorem: if x and y are two integers for which x + y is even, then x and y have the same parity
- Proof: the contrapositive version of this theorem is "If x and y are two integers with opposite parity, then their sum must be odd." So we assume x is even and y is odd. Thus there are integers k and m for which x = 2k and y = 2m + 1. Now then, we compute the sum x + y = 2k + 2m + 1 = 2(k + m) + 1 which is an odd integer by definition because k + m must be an integer

If, and only if a.k.a iff

- Indicative of a proof that is reversible.
- It requires the ability to show that the first implies the second and vice versa.

Examples

- A person is a bachelor iff that person is a marriageable man who has never married.
- Cheese is good iff it is from Europe.
- A person is great iff they are us.

Proof that "All Girls are Evil"

First we state that girls require time and money.

And as we all know "time is money."

Therefore:

And because "money is the root of all evil":

Therefore:

And we are forced to conclude that:

If a = b (so I say) And we multiply both sides by a Then we'll see that a2 When with ab compared Are the same. Remove b2. OK?

Both sides we will factorize. See? Now each side contains a – b. We'll divide through by a Minus b and olé a + b = b. Oh whoopee!

But since I said a = b b + b = b you'll agree? So if b = I Then this sum I have done Proves that 2 = I. Q.E.D.

$$[a = b]$$

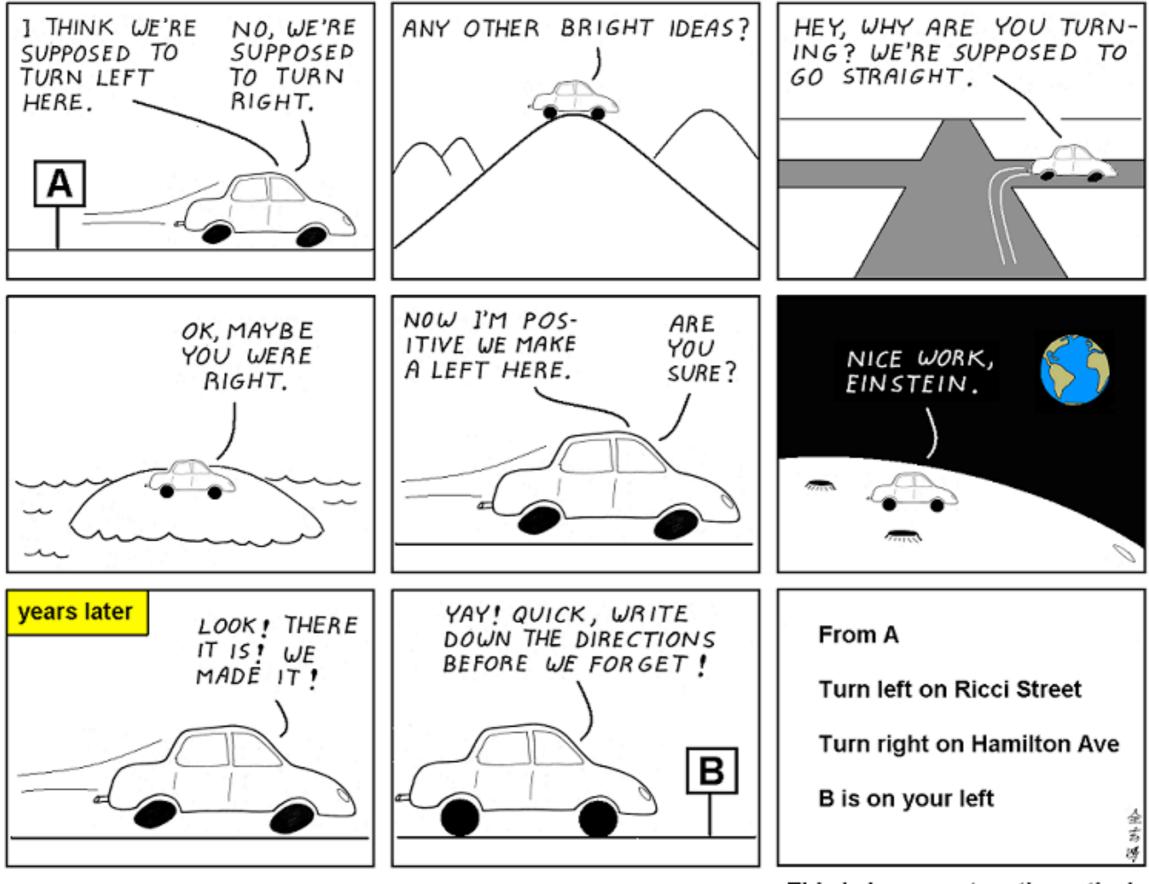
 $[a2 = ab]$
 $[a2 - b2 = ab - b2]$

$$[(a+b)(a - b) = b(a - b)]$$

[a + b = b]

$$[| + | = |]$$

If you think that this proof is a hit And you're enamored with your clever wit Then look close and you'll see That in part two, line three, You divided by zero - OH SH-



This is how most mathematical proofs are written.

P